
If an inverse trigonometric equation is given by ${{\sin }^{-1}}\left( 1-x \right)-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}$, then x is equal to
(a) 0, $\dfrac{1}{2}$
(b) 1, $\dfrac{1}{2}$
(c) 0
(d) $\dfrac{1}{2}$
Answer
609.6k+ views
Hint: We will apply the trigonometric identity given by ${{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1$and inverse trigonometric identity given by ${{\cos }^{-1}}\left( p \right)+{{\sin }^{-1}}\left( p \right)=\dfrac{\pi }{2}$.
Complete step-by-step answer:
First we will consider the expression ${{\sin }^{-1}}\left( 1-x \right)-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}...(i)$. Now we will place the term ${{\sin }^{-1}}\left( 1-x \right)$ in equation (i) to the right side of the expression. Thus, we get $-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( 1-x \right)$.
Now we will apply the formula of inverse trigonometric identity which is given by ${{\cos }^{-1}}\left( p \right)+{{\sin }^{-1}}\left( p \right)=\dfrac{\pi }{2}$ to the right side of the expression $-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( 1-x \right)$. Therefore, we have
$\begin{align}
& -2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-\left( \dfrac{\pi }{2}-{{\cos }^{-1}}\left( 1-x \right) \right) \\
& \Rightarrow -2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-\dfrac{\pi }{2}+{{\cos }^{-1}}\left( 1-x \right) \\
& \Rightarrow -2{{\sin }^{-1}}\left( x \right)={{\cos }^{-1}}\left( 1-x \right)...(ii) \\
\end{align}$
Now we will substitute the term ${{\sin }^{-1}}\left( x \right)$ equal to a. Thus we will have ${{\sin }^{-1}}\left( x \right)=a$. Now we will take the inverse sine term to the right side of the equation. Therefore, we will have $x=\sin \left( a \right)$. Now we will use the formula ${{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1$ or, ${{\cos }^{2}}\left( p \right)=1-{{\sin }^{2}}\left( p \right)$ in the expression $x=\sin \left( a \right)$. After squaring both the sides of this equation we have ${{x}^{2}}={{\sin }^{2}}\left( a \right)$. Therefore, we get ${{x}^{2}}=1-{{\cos }^{2}}\left( a \right)$. Now we will find the value of a from this equation. This can be done as,
$\begin{align}
& {{x}^{2}}=1-{{\cos }^{2}}\left( a \right) \\
& \Rightarrow {{\cos }^{2}}\left( a \right)=1-{{x}^{2}} \\
& \Rightarrow \cos \left( a \right)=\sqrt{1-{{x}^{2}}} \\
& \Rightarrow a={{\cos }^{-1}}\sqrt{1-{{x}^{2}}} \\
\end{align}$
As we have ${{\sin }^{-1}}\left( x \right)=a$ and $a={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}$. Thus, we get ${{\sin }^{-1}}\left( x \right)={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}...(iii)$. After substituting equation (iii) in (ii) we can have $-2{{\cos }^{-1}}\sqrt{1-{{x}^{2}}}={{\cos }^{-1}}\left( 1-x \right)$. Now we will apply substitution here by substituting x = $\sin \left( q \right)$. Thus we get $-2{{\cos }^{-1}}\sqrt{1-{{\sin }^{2}}\left( q \right)}={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$.
By applying formula ${{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1$ results into a new expression given by $-2{{\cos }^{-1}}\sqrt{{{\cos }^{2}}\left( q \right)}={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$.
Therefore, we have $-2{{\cos }^{-1}}\left( \cos \left( q \right) \right)={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$. By the formula ${{\cos }^{-1}}\left( \cos \left( x \right) \right)=x$ gives us the equation $-2q={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$.
Now we will place the inverse cosine term to the left side of the expression we will get $\cos \left( -2q \right)=1-\sin \left( q \right)$. As $\cos \left( -y \right)=\cos \left( y \right)$ thus we have $\cos \left( 2q \right)=1-\sin \left( q \right)$.
Now we will apply the formula $\cos \left( 2\theta \right)=1-2{{\sin }^{2}}\left( \theta \right)$. This results into $1-2{{\sin }^{2}}\left( q \right)=1-\sin \left( q \right)$ or, $1=2{{\sin }^{2}}\left( q \right)-\sin \left( q \right)+1$. At this step we will cancel 1 from both the sides of the expression. Thus we have
$\begin{align}
& 2{{\sin }^{2}}\left( q \right)-\sin \left( q \right)=0 \\
& \Rightarrow \sin \left( q \right)\left( 2\sin \left( q \right)-1 \right)=0 \\
\end{align}$
So, we can have either $\left( 2\sin \left( q \right)-1 \right)=0$ or $\sin \left( q \right)=0$. This further results into $\sin \left( q \right)=\dfrac{1}{2}$ or $\sin \left( q \right)=0$. Since, x = $\sin \left( q \right)$ therefore, we actually have that x = 0 or $\dfrac{1}{2}$.
Now we will substitute the value of x = 0 in the left hand side of equation (i). Therefore, we get
${{\sin }^{-1}}\left( 1-\left( 0 \right) \right)-2{{\sin }^{-1}}\left( 0 \right)$ which is equal to ${{\sin }^{-1}}\left( 1 \right)$. As we know that the value of $\sin \left( \dfrac{\pi }{2} \right)=1$ thus we get ${{\sin }^{-1}}\left( 1 \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2} \right) \right)$ or ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$. Clearly it is equal to the right side of equation (i). So, x = 0 satisfies the equation.
Now we will check for x = $\dfrac{1}{2}$. We will substitute the value to the left hand side of equation (i). Therefore, we get ${{\sin }^{-1}}\left( 1-\left( \dfrac{1}{2} \right) \right)-2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ which is equal to ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$. As we know that the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$ thus we get ${{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right)-2{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right)$. After applying the formula ${{\sin }^{-1}}\left( \sin \left( x \right) \right)=x$ results into
$\begin{align}
& \dfrac{\pi }{6}-2\times \dfrac{\pi }{6}=\dfrac{\pi }{6}-\dfrac{\pi }{3} \\
& \Rightarrow \dfrac{\pi }{6}-2\times \dfrac{\pi }{6}=\dfrac{\pi -2\pi }{6} \\
& \Rightarrow \dfrac{\pi }{6}-2\times \dfrac{\pi }{6}=\dfrac{-\pi }{6} \\
\end{align}$
Clearly it is not equal to the right side of equation (i). Therefore, it does not satisfy the equation.
Hence, the correct option is (c).
Note: By placing the inverse trigonometric terms we should be aware that they need to be changed to the simple trigonometric term. As this solution consists of a lot of substitutions, one needs to put equation numbers as per their understanding.
Complete step-by-step answer:
First we will consider the expression ${{\sin }^{-1}}\left( 1-x \right)-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}...(i)$. Now we will place the term ${{\sin }^{-1}}\left( 1-x \right)$ in equation (i) to the right side of the expression. Thus, we get $-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( 1-x \right)$.
Now we will apply the formula of inverse trigonometric identity which is given by ${{\cos }^{-1}}\left( p \right)+{{\sin }^{-1}}\left( p \right)=\dfrac{\pi }{2}$ to the right side of the expression $-2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( 1-x \right)$. Therefore, we have
$\begin{align}
& -2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-\left( \dfrac{\pi }{2}-{{\cos }^{-1}}\left( 1-x \right) \right) \\
& \Rightarrow -2{{\sin }^{-1}}\left( x \right)=\dfrac{\pi }{2}-\dfrac{\pi }{2}+{{\cos }^{-1}}\left( 1-x \right) \\
& \Rightarrow -2{{\sin }^{-1}}\left( x \right)={{\cos }^{-1}}\left( 1-x \right)...(ii) \\
\end{align}$
Now we will substitute the term ${{\sin }^{-1}}\left( x \right)$ equal to a. Thus we will have ${{\sin }^{-1}}\left( x \right)=a$. Now we will take the inverse sine term to the right side of the equation. Therefore, we will have $x=\sin \left( a \right)$. Now we will use the formula ${{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1$ or, ${{\cos }^{2}}\left( p \right)=1-{{\sin }^{2}}\left( p \right)$ in the expression $x=\sin \left( a \right)$. After squaring both the sides of this equation we have ${{x}^{2}}={{\sin }^{2}}\left( a \right)$. Therefore, we get ${{x}^{2}}=1-{{\cos }^{2}}\left( a \right)$. Now we will find the value of a from this equation. This can be done as,
$\begin{align}
& {{x}^{2}}=1-{{\cos }^{2}}\left( a \right) \\
& \Rightarrow {{\cos }^{2}}\left( a \right)=1-{{x}^{2}} \\
& \Rightarrow \cos \left( a \right)=\sqrt{1-{{x}^{2}}} \\
& \Rightarrow a={{\cos }^{-1}}\sqrt{1-{{x}^{2}}} \\
\end{align}$
As we have ${{\sin }^{-1}}\left( x \right)=a$ and $a={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}$. Thus, we get ${{\sin }^{-1}}\left( x \right)={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}...(iii)$. After substituting equation (iii) in (ii) we can have $-2{{\cos }^{-1}}\sqrt{1-{{x}^{2}}}={{\cos }^{-1}}\left( 1-x \right)$. Now we will apply substitution here by substituting x = $\sin \left( q \right)$. Thus we get $-2{{\cos }^{-1}}\sqrt{1-{{\sin }^{2}}\left( q \right)}={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$.
By applying formula ${{\sin }^{2}}\left( p \right)+{{\cos }^{2}}\left( p \right)=1$ results into a new expression given by $-2{{\cos }^{-1}}\sqrt{{{\cos }^{2}}\left( q \right)}={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$.
Therefore, we have $-2{{\cos }^{-1}}\left( \cos \left( q \right) \right)={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$. By the formula ${{\cos }^{-1}}\left( \cos \left( x \right) \right)=x$ gives us the equation $-2q={{\cos }^{-1}}\left( 1-\sin \left( q \right) \right)$.
Now we will place the inverse cosine term to the left side of the expression we will get $\cos \left( -2q \right)=1-\sin \left( q \right)$. As $\cos \left( -y \right)=\cos \left( y \right)$ thus we have $\cos \left( 2q \right)=1-\sin \left( q \right)$.
Now we will apply the formula $\cos \left( 2\theta \right)=1-2{{\sin }^{2}}\left( \theta \right)$. This results into $1-2{{\sin }^{2}}\left( q \right)=1-\sin \left( q \right)$ or, $1=2{{\sin }^{2}}\left( q \right)-\sin \left( q \right)+1$. At this step we will cancel 1 from both the sides of the expression. Thus we have
$\begin{align}
& 2{{\sin }^{2}}\left( q \right)-\sin \left( q \right)=0 \\
& \Rightarrow \sin \left( q \right)\left( 2\sin \left( q \right)-1 \right)=0 \\
\end{align}$
So, we can have either $\left( 2\sin \left( q \right)-1 \right)=0$ or $\sin \left( q \right)=0$. This further results into $\sin \left( q \right)=\dfrac{1}{2}$ or $\sin \left( q \right)=0$. Since, x = $\sin \left( q \right)$ therefore, we actually have that x = 0 or $\dfrac{1}{2}$.
Now we will substitute the value of x = 0 in the left hand side of equation (i). Therefore, we get
${{\sin }^{-1}}\left( 1-\left( 0 \right) \right)-2{{\sin }^{-1}}\left( 0 \right)$ which is equal to ${{\sin }^{-1}}\left( 1 \right)$. As we know that the value of $\sin \left( \dfrac{\pi }{2} \right)=1$ thus we get ${{\sin }^{-1}}\left( 1 \right)={{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2} \right) \right)$ or ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$. Clearly it is equal to the right side of equation (i). So, x = 0 satisfies the equation.
Now we will check for x = $\dfrac{1}{2}$. We will substitute the value to the left hand side of equation (i). Therefore, we get ${{\sin }^{-1}}\left( 1-\left( \dfrac{1}{2} \right) \right)-2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ which is equal to ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$. As we know that the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$ thus we get ${{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right)-2{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right)$. After applying the formula ${{\sin }^{-1}}\left( \sin \left( x \right) \right)=x$ results into
$\begin{align}
& \dfrac{\pi }{6}-2\times \dfrac{\pi }{6}=\dfrac{\pi }{6}-\dfrac{\pi }{3} \\
& \Rightarrow \dfrac{\pi }{6}-2\times \dfrac{\pi }{6}=\dfrac{\pi -2\pi }{6} \\
& \Rightarrow \dfrac{\pi }{6}-2\times \dfrac{\pi }{6}=\dfrac{-\pi }{6} \\
\end{align}$
Clearly it is not equal to the right side of equation (i). Therefore, it does not satisfy the equation.
Hence, the correct option is (c).
Note: By placing the inverse trigonometric terms we should be aware that they need to be changed to the simple trigonometric term. As this solution consists of a lot of substitutions, one needs to put equation numbers as per their understanding.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

