
If an inverse trigonometric equation is given as ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ , then $x$ is equal to.
(a) $\pm \dfrac{1}{\sqrt{2}}$
(b) $1$
(c) $\pm \dfrac{1}{\sqrt{3}}$
(d) $\dfrac{1}{\sqrt{2}}$
Answer
610.2k+ views
Hint: For solving this question first we will prove an important formula of inverse trigonometric functions i.e., ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. After that, we will find the angle ${{\sin }^{-1}}x$ and then solve further to find the exact value of $x$.
Complete step-by-step solution -
Given:
It is given that, ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ and we have to find the value of $x$.
Now, let $\sin \theta =x$. Then,
$\begin{align}
& \sin \theta =x \\
& \Rightarrow \theta ={{\sin }^{-1}}x..................\left( 1 \right) \\
\end{align}$
Now, as we know that range of function $\theta ={{\sin }^{-1}}x$ will be from $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ . Then,
$-\dfrac{\pi }{2}\le \theta \le \dfrac{\pi }{2}...................\left( 2 \right)$
Now, we know that $\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)$ always. Then,
$\begin{align}
& \sin \theta =x \\
& \Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=x \\
\end{align}$
Now, let $\dfrac{\pi }{2}-\theta =\alpha $ so, we can write $\cos \left( \dfrac{\pi }{2}-\theta \right)=\cos \alpha $ in the above equation. Then,
$\begin{align}
& \cos \left( \dfrac{\pi }{2}-\theta \right)=x \\
& \Rightarrow \cos \alpha =x \\
& \Rightarrow \alpha ={{\cos }^{-1}}x.................\left( 3 \right) \\
\end{align}$
Now, as we know that range of function $\alpha ={{\cos }^{-1}}x$ will be from $\left[ 0,\pi \right]$ . Then,
$0\le \alpha \le \pi $
Now, as per our assumption $\dfrac{\pi }{2}-\theta =\alpha $ so, we can write $\alpha =\dfrac{\pi }{2}-\theta $ in the above inequality. Then,
$\begin{align}
& 0\le \alpha \le \pi \\
& \Rightarrow 0\le \dfrac{\pi }{2}-\theta \le \pi \\
\end{align}$
Now, subtract $\dfrac{\pi }{2}$ in the above inequality. Then,
$\begin{align}
& 0\le \dfrac{\pi }{2}-\theta \le \pi \\
& \Rightarrow -\dfrac{\pi }{2}\le \dfrac{\pi }{2}-\theta -\dfrac{\pi }{2}\le \pi -\dfrac{\pi }{2} \\
& \Rightarrow -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} \\
\end{align}$
Now, multiply by -1 in the above inequality. Then,
$\begin{align}
& -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{2}\ge \theta \ge -\dfrac{\pi }{2} \\
\end{align}$
Now, we can write the above inequality as $-\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2}$ and as this result matches with the equation (2) so, we conclude that we can write $\alpha ={{\cos }^{-1}}x$ for $\dfrac{\pi }{2}-\theta =\alpha $ always. Then,
$\begin{align}
& \alpha ={{\cos }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-\theta ={{\cos }^{-1}}x \\
\end{align}$
Now, put the value of $\theta ={{\sin }^{-1}}x$ from equation (1) in the above equation. Then,
$\begin{align}
& \dfrac{\pi }{2}-\theta ={{\cos }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}x={{\cos }^{-1}}x \\
& \Rightarrow {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\
\end{align}$
Now, from the above result, we conclude that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ is always true. Then,
$\begin{align}
& {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\
& \Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
\end{align}$
Now, subtract ${{\sin }^{-1}}x$ from the above equation. Then,
$\begin{align}
& {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
& \Rightarrow {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x-{{\sin }^{-1}}x \\
& \Rightarrow {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\
\end{align}$
Now, it is given that ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ . Then,
$\begin{align}
& {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\
& \Rightarrow 0=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\
& \Rightarrow 2{{\sin }^{-1}}x=\dfrac{\pi }{2} \\
& \Rightarrow {{\sin }^{-1}}x=\dfrac{\pi }{4} \\
\end{align}$
Now, apply sine operator in the above equation and then, write $\sin \left( {{\sin }^{-1}}x \right)=x$ and $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ . Then,
$\begin{align}
& {{\sin }^{-1}}x=\dfrac{\pi }{4} \\
& \Rightarrow \sin \left( {{\sin }^{-1}}x \right)=\sin \dfrac{\pi }{4} \\
& \Rightarrow x=\dfrac{1}{\sqrt{2}} \\
\end{align}$
Now, from the above result, we conclude that if ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ , then the value of $x=\dfrac{1}{\sqrt{2}}$ .
Hence, option (d) will be the correct option.
Note: Here, the student should first understand and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should remember the result ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ and apply it directly without any mistake to get the correct answer quickly without doing lengthy calculations.
Complete step-by-step solution -
Given:
It is given that, ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ and we have to find the value of $x$.
Now, let $\sin \theta =x$. Then,
$\begin{align}
& \sin \theta =x \\
& \Rightarrow \theta ={{\sin }^{-1}}x..................\left( 1 \right) \\
\end{align}$
Now, as we know that range of function $\theta ={{\sin }^{-1}}x$ will be from $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ . Then,
$-\dfrac{\pi }{2}\le \theta \le \dfrac{\pi }{2}...................\left( 2 \right)$
Now, we know that $\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)$ always. Then,
$\begin{align}
& \sin \theta =x \\
& \Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=x \\
\end{align}$
Now, let $\dfrac{\pi }{2}-\theta =\alpha $ so, we can write $\cos \left( \dfrac{\pi }{2}-\theta \right)=\cos \alpha $ in the above equation. Then,
$\begin{align}
& \cos \left( \dfrac{\pi }{2}-\theta \right)=x \\
& \Rightarrow \cos \alpha =x \\
& \Rightarrow \alpha ={{\cos }^{-1}}x.................\left( 3 \right) \\
\end{align}$
Now, as we know that range of function $\alpha ={{\cos }^{-1}}x$ will be from $\left[ 0,\pi \right]$ . Then,
$0\le \alpha \le \pi $
Now, as per our assumption $\dfrac{\pi }{2}-\theta =\alpha $ so, we can write $\alpha =\dfrac{\pi }{2}-\theta $ in the above inequality. Then,
$\begin{align}
& 0\le \alpha \le \pi \\
& \Rightarrow 0\le \dfrac{\pi }{2}-\theta \le \pi \\
\end{align}$
Now, subtract $\dfrac{\pi }{2}$ in the above inequality. Then,
$\begin{align}
& 0\le \dfrac{\pi }{2}-\theta \le \pi \\
& \Rightarrow -\dfrac{\pi }{2}\le \dfrac{\pi }{2}-\theta -\dfrac{\pi }{2}\le \pi -\dfrac{\pi }{2} \\
& \Rightarrow -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} \\
\end{align}$
Now, multiply by -1 in the above inequality. Then,
$\begin{align}
& -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{2}\ge \theta \ge -\dfrac{\pi }{2} \\
\end{align}$
Now, we can write the above inequality as $-\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2}$ and as this result matches with the equation (2) so, we conclude that we can write $\alpha ={{\cos }^{-1}}x$ for $\dfrac{\pi }{2}-\theta =\alpha $ always. Then,
$\begin{align}
& \alpha ={{\cos }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-\theta ={{\cos }^{-1}}x \\
\end{align}$
Now, put the value of $\theta ={{\sin }^{-1}}x$ from equation (1) in the above equation. Then,
$\begin{align}
& \dfrac{\pi }{2}-\theta ={{\cos }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}x={{\cos }^{-1}}x \\
& \Rightarrow {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\
\end{align}$
Now, from the above result, we conclude that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ is always true. Then,
$\begin{align}
& {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\
& \Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
\end{align}$
Now, subtract ${{\sin }^{-1}}x$ from the above equation. Then,
$\begin{align}
& {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
& \Rightarrow {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x-{{\sin }^{-1}}x \\
& \Rightarrow {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\
\end{align}$
Now, it is given that ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ . Then,
$\begin{align}
& {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\
& \Rightarrow 0=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\
& \Rightarrow 2{{\sin }^{-1}}x=\dfrac{\pi }{2} \\
& \Rightarrow {{\sin }^{-1}}x=\dfrac{\pi }{4} \\
\end{align}$
Now, apply sine operator in the above equation and then, write $\sin \left( {{\sin }^{-1}}x \right)=x$ and $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ . Then,
$\begin{align}
& {{\sin }^{-1}}x=\dfrac{\pi }{4} \\
& \Rightarrow \sin \left( {{\sin }^{-1}}x \right)=\sin \dfrac{\pi }{4} \\
& \Rightarrow x=\dfrac{1}{\sqrt{2}} \\
\end{align}$
Now, from the above result, we conclude that if ${{\cos }^{-1}}x-{{\sin }^{-1}}x=0$ , then the value of $x=\dfrac{1}{\sqrt{2}}$ .
Hence, option (d) will be the correct option.
Note: Here, the student should first understand and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should remember the result ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ and apply it directly without any mistake to get the correct answer quickly without doing lengthy calculations.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

