# If $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right),\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$ where $0<\alpha ,\beta <\dfrac{\pi }{2},$then $\alpha -\beta $ is equal to:

A. ${{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$

B. ${{\tan }^{-1}}\left( \dfrac{9}{14} \right)$

C. ${{\cos }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$

D. ${{\tan }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$

Answer

Verified

381.6k+ views

Hint: Using the basic definition of the trigonometric ratio first find the values of the sides of the triangle. Then apply Pythagoras theorem to find the other side of the triangle. Next find the values of $\text{sin, cos, tan}$ of $\alpha ,\beta $ respectively and then simplify to get the result.

Complete step-by-step answer:

In the question we are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\text{ and }\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$

Now, let’s consider a right angled triangle with an included angle $'\alpha '$ and another right angled triangle with an included angle $'\beta '$ which is shown in figure 1 and figure 2 respectively.

F

We are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$

$\Rightarrow \cos \alpha =\dfrac{3}{5}$

But we know, $\cos \theta =\dfrac{\text{adjacent side}}{hypotenuse}$ , so in $\Delta ABC,$

$\cos \alpha =\dfrac{BC}{AC}=\dfrac{3}{5}$

So, by Pythagoras theorem, we have

$\begin{align}

& AB=\sqrt{{{\left( AC \right)}^{2}}-{{\left( BC \right)}^{2}}} \\

& AB=\sqrt{{{5}^{2}}-{{3}^{2}}}=4 \\

\end{align}$

Now we know, $sin\theta =\dfrac{\text{opposite side}}{hypotenuse}$, so we get

$\sin \alpha =\dfrac{AB}{AC}$

Substituting the corresponding values, we get

$\sin \alpha =\dfrac{4}{5}$

Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write

$tan\alpha =\dfrac{\sin \alpha }{\cos \alpha }$

Substituting the corresponding values, we get

$tan\alpha =\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}$

Now we got all the sine, cosine and tan of $'\alpha '$.

Now consider figure 2;

We are given,

$\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$

$\Rightarrow \tan \beta =\dfrac{1}{3}$

Now we know, $tan\theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$.

In $\Delta DEF,$, we can write

$\tan \beta =\dfrac{DE}{EF}=\dfrac{1}{3}$

So, by Pythagoras theorem, we have

\[\begin{align}

& {{\left( DF \right)}^{2}}={{\left( DE \right)}^{2}}+{{\left( EF \right)}^{2}} \\

& DF=\sqrt{{{1}^{2}}+{{3}^{2}}}=\sqrt{10} \\

\end{align}\]

Using the value of sides of the triangle, we will find the corresponding sine, cosine values.

$\sin \beta =\dfrac{DE}{DF}=\dfrac{1}{\sqrt{10}}$

Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write

$tan\beta =\dfrac{\sin \beta }{\cos \beta }$

Substituting the corresponding values, we get

$\begin{align}

& \Rightarrow \dfrac{1}{3}=\dfrac{\dfrac{1}{\sqrt{10}}}{\cos \beta } \\

& \Rightarrow \cos \beta =\dfrac{3}{\sqrt{10}} \\

\end{align}$

Now we got all the sine, cosine and tan of $'\beta '$.

Now, we will use the identity,

$\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $

We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;

\[\begin{align}

& \sin \left( \alpha -\beta \right)=\dfrac{4}{5}\times \dfrac{3}{\sqrt{10}}-\dfrac{3}{5}\times \dfrac{1}{\sqrt{10}} \\

& \sin \left( \alpha -\beta \right)=\dfrac{12-3}{5\sqrt{10}}=\dfrac{9}{5\sqrt{10}} \\

\end{align}\]

Now, we see that;

$\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}$

Then $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$

Now, we will use the identity,

$\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $

We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;

$\begin{align}

& \cos \left( \alpha -\beta \right)=\dfrac{3}{5}\times \dfrac{3}{\sqrt{10}}+\dfrac{4}{5}\times \dfrac{1}{\sqrt{10}} \\

& =\dfrac{9}{5\sqrt{10}}+\dfrac{4}{5\sqrt{10}}=\dfrac{13}{5\sqrt{10}} \\

\end{align}$

Now, we see that;

$\cos \left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$

Then $\left( \alpha -\beta \right)={{\cos }^{-1}}\left( \dfrac{13}{5\sqrt{10}} \right)$

Now, we will use the identity,

$\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$

As, we got that $\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}\text{ and cos}\left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$

So, $\tan \left( \alpha -\beta \right)=\dfrac{9}{13}$

Then$\left( \alpha -\beta \right)={{\tan }^{-1}}\left( \dfrac{9}{13} \right)$

So, the correct answer is option A.

Note: The identities of all the trigonometric ratios must be known by heart by the students to work on these kinds of problems at a quick pace. Also, the calculation part must be done with care to avoid silly mistakes.

Student generally calculate the value of $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$, then they stop thinking we got the answer. But they should find other values too for comparing.

Complete step-by-step answer:

In the question we are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\text{ and }\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$

Now, let’s consider a right angled triangle with an included angle $'\alpha '$ and another right angled triangle with an included angle $'\beta '$ which is shown in figure 1 and figure 2 respectively.

F

We are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$

$\Rightarrow \cos \alpha =\dfrac{3}{5}$

But we know, $\cos \theta =\dfrac{\text{adjacent side}}{hypotenuse}$ , so in $\Delta ABC,$

$\cos \alpha =\dfrac{BC}{AC}=\dfrac{3}{5}$

So, by Pythagoras theorem, we have

$\begin{align}

& AB=\sqrt{{{\left( AC \right)}^{2}}-{{\left( BC \right)}^{2}}} \\

& AB=\sqrt{{{5}^{2}}-{{3}^{2}}}=4 \\

\end{align}$

Now we know, $sin\theta =\dfrac{\text{opposite side}}{hypotenuse}$, so we get

$\sin \alpha =\dfrac{AB}{AC}$

Substituting the corresponding values, we get

$\sin \alpha =\dfrac{4}{5}$

Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write

$tan\alpha =\dfrac{\sin \alpha }{\cos \alpha }$

Substituting the corresponding values, we get

$tan\alpha =\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}$

Now we got all the sine, cosine and tan of $'\alpha '$.

Now consider figure 2;

We are given,

$\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$

$\Rightarrow \tan \beta =\dfrac{1}{3}$

Now we know, $tan\theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$.

In $\Delta DEF,$, we can write

$\tan \beta =\dfrac{DE}{EF}=\dfrac{1}{3}$

So, by Pythagoras theorem, we have

\[\begin{align}

& {{\left( DF \right)}^{2}}={{\left( DE \right)}^{2}}+{{\left( EF \right)}^{2}} \\

& DF=\sqrt{{{1}^{2}}+{{3}^{2}}}=\sqrt{10} \\

\end{align}\]

Using the value of sides of the triangle, we will find the corresponding sine, cosine values.

$\sin \beta =\dfrac{DE}{DF}=\dfrac{1}{\sqrt{10}}$

Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write

$tan\beta =\dfrac{\sin \beta }{\cos \beta }$

Substituting the corresponding values, we get

$\begin{align}

& \Rightarrow \dfrac{1}{3}=\dfrac{\dfrac{1}{\sqrt{10}}}{\cos \beta } \\

& \Rightarrow \cos \beta =\dfrac{3}{\sqrt{10}} \\

\end{align}$

Now we got all the sine, cosine and tan of $'\beta '$.

Now, we will use the identity,

$\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $

We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;

\[\begin{align}

& \sin \left( \alpha -\beta \right)=\dfrac{4}{5}\times \dfrac{3}{\sqrt{10}}-\dfrac{3}{5}\times \dfrac{1}{\sqrt{10}} \\

& \sin \left( \alpha -\beta \right)=\dfrac{12-3}{5\sqrt{10}}=\dfrac{9}{5\sqrt{10}} \\

\end{align}\]

Now, we see that;

$\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}$

Then $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$

Now, we will use the identity,

$\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $

We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;

$\begin{align}

& \cos \left( \alpha -\beta \right)=\dfrac{3}{5}\times \dfrac{3}{\sqrt{10}}+\dfrac{4}{5}\times \dfrac{1}{\sqrt{10}} \\

& =\dfrac{9}{5\sqrt{10}}+\dfrac{4}{5\sqrt{10}}=\dfrac{13}{5\sqrt{10}} \\

\end{align}$

Now, we see that;

$\cos \left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$

Then $\left( \alpha -\beta \right)={{\cos }^{-1}}\left( \dfrac{13}{5\sqrt{10}} \right)$

Now, we will use the identity,

$\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$

As, we got that $\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}\text{ and cos}\left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$

So, $\tan \left( \alpha -\beta \right)=\dfrac{9}{13}$

Then$\left( \alpha -\beta \right)={{\tan }^{-1}}\left( \dfrac{9}{13} \right)$

So, the correct answer is option A.

Note: The identities of all the trigonometric ratios must be known by heart by the students to work on these kinds of problems at a quick pace. Also, the calculation part must be done with care to avoid silly mistakes.

Student generally calculate the value of $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$, then they stop thinking we got the answer. But they should find other values too for comparing.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE