If $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right),\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$ where $0<\alpha ,\beta <\dfrac{\pi }{2},$then $\alpha -\beta $ is equal to:
A. ${{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$
B. ${{\tan }^{-1}}\left( \dfrac{9}{14} \right)$
C. ${{\cos }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$
D. ${{\tan }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$
Answer
328.5k+ views
Hint: Using the basic definition of the trigonometric ratio first find the values of the sides of the triangle. Then apply Pythagoras theorem to find the other side of the triangle. Next find the values of $\text{sin, cos, tan}$ of $\alpha ,\beta $ respectively and then simplify to get the result.
Complete step-by-step answer:
In the question we are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\text{ and }\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$
Now, let’s consider a right angled triangle with an included angle $'\alpha '$ and another right angled triangle with an included angle $'\beta '$ which is shown in figure 1 and figure 2 respectively.
F
We are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
$\Rightarrow \cos \alpha =\dfrac{3}{5}$
But we know, $\cos \theta =\dfrac{\text{adjacent side}}{hypotenuse}$ , so in $\Delta ABC,$
$\cos \alpha =\dfrac{BC}{AC}=\dfrac{3}{5}$
So, by Pythagoras theorem, we have
$\begin{align}
& AB=\sqrt{{{\left( AC \right)}^{2}}-{{\left( BC \right)}^{2}}} \\
& AB=\sqrt{{{5}^{2}}-{{3}^{2}}}=4 \\
\end{align}$
Now we know, $sin\theta =\dfrac{\text{opposite side}}{hypotenuse}$, so we get
$\sin \alpha =\dfrac{AB}{AC}$
Substituting the corresponding values, we get
$\sin \alpha =\dfrac{4}{5}$
Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write
$tan\alpha =\dfrac{\sin \alpha }{\cos \alpha }$
Substituting the corresponding values, we get
$tan\alpha =\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}$
Now we got all the sine, cosine and tan of $'\alpha '$.
Now consider figure 2;
We are given,
$\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$
$\Rightarrow \tan \beta =\dfrac{1}{3}$
Now we know, $tan\theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$.
In $\Delta DEF,$, we can write
$\tan \beta =\dfrac{DE}{EF}=\dfrac{1}{3}$
So, by Pythagoras theorem, we have
\[\begin{align}
& {{\left( DF \right)}^{2}}={{\left( DE \right)}^{2}}+{{\left( EF \right)}^{2}} \\
& DF=\sqrt{{{1}^{2}}+{{3}^{2}}}=\sqrt{10} \\
\end{align}\]
Using the value of sides of the triangle, we will find the corresponding sine, cosine values.
$\sin \beta =\dfrac{DE}{DF}=\dfrac{1}{\sqrt{10}}$
Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write
$tan\beta =\dfrac{\sin \beta }{\cos \beta }$
Substituting the corresponding values, we get
$\begin{align}
& \Rightarrow \dfrac{1}{3}=\dfrac{\dfrac{1}{\sqrt{10}}}{\cos \beta } \\
& \Rightarrow \cos \beta =\dfrac{3}{\sqrt{10}} \\
\end{align}$
Now we got all the sine, cosine and tan of $'\beta '$.
Now, we will use the identity,
$\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $
We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;
\[\begin{align}
& \sin \left( \alpha -\beta \right)=\dfrac{4}{5}\times \dfrac{3}{\sqrt{10}}-\dfrac{3}{5}\times \dfrac{1}{\sqrt{10}} \\
& \sin \left( \alpha -\beta \right)=\dfrac{12-3}{5\sqrt{10}}=\dfrac{9}{5\sqrt{10}} \\
\end{align}\]
Now, we see that;
$\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}$
Then $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$
Now, we will use the identity,
$\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $
We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;
$\begin{align}
& \cos \left( \alpha -\beta \right)=\dfrac{3}{5}\times \dfrac{3}{\sqrt{10}}+\dfrac{4}{5}\times \dfrac{1}{\sqrt{10}} \\
& =\dfrac{9}{5\sqrt{10}}+\dfrac{4}{5\sqrt{10}}=\dfrac{13}{5\sqrt{10}} \\
\end{align}$
Now, we see that;
$\cos \left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$
Then $\left( \alpha -\beta \right)={{\cos }^{-1}}\left( \dfrac{13}{5\sqrt{10}} \right)$
Now, we will use the identity,
$\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$
As, we got that $\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}\text{ and cos}\left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$
So, $\tan \left( \alpha -\beta \right)=\dfrac{9}{13}$
Then$\left( \alpha -\beta \right)={{\tan }^{-1}}\left( \dfrac{9}{13} \right)$
So, the correct answer is option A.
Note: The identities of all the trigonometric ratios must be known by heart by the students to work on these kinds of problems at a quick pace. Also, the calculation part must be done with care to avoid silly mistakes.
Student generally calculate the value of $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$, then they stop thinking we got the answer. But they should find other values too for comparing.
Complete step-by-step answer:
In the question we are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\text{ and }\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$
Now, let’s consider a right angled triangle with an included angle $'\alpha '$ and another right angled triangle with an included angle $'\beta '$ which is shown in figure 1 and figure 2 respectively.

F
We are given $\alpha ={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
$\Rightarrow \cos \alpha =\dfrac{3}{5}$
But we know, $\cos \theta =\dfrac{\text{adjacent side}}{hypotenuse}$ , so in $\Delta ABC,$
$\cos \alpha =\dfrac{BC}{AC}=\dfrac{3}{5}$
So, by Pythagoras theorem, we have
$\begin{align}
& AB=\sqrt{{{\left( AC \right)}^{2}}-{{\left( BC \right)}^{2}}} \\
& AB=\sqrt{{{5}^{2}}-{{3}^{2}}}=4 \\
\end{align}$
Now we know, $sin\theta =\dfrac{\text{opposite side}}{hypotenuse}$, so we get
$\sin \alpha =\dfrac{AB}{AC}$
Substituting the corresponding values, we get
$\sin \alpha =\dfrac{4}{5}$
Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write
$tan\alpha =\dfrac{\sin \alpha }{\cos \alpha }$
Substituting the corresponding values, we get
$tan\alpha =\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}$
Now we got all the sine, cosine and tan of $'\alpha '$.
Now consider figure 2;
We are given,
$\beta ={{\tan }^{-1}}\left( \dfrac{1}{3} \right)$
$\Rightarrow \tan \beta =\dfrac{1}{3}$
Now we know, $tan\theta =\dfrac{\text{opposite side}}{\text{adjacent side}}$.
In $\Delta DEF,$, we can write
$\tan \beta =\dfrac{DE}{EF}=\dfrac{1}{3}$
So, by Pythagoras theorem, we have
\[\begin{align}
& {{\left( DF \right)}^{2}}={{\left( DE \right)}^{2}}+{{\left( EF \right)}^{2}} \\
& DF=\sqrt{{{1}^{2}}+{{3}^{2}}}=\sqrt{10} \\
\end{align}\]
Using the value of sides of the triangle, we will find the corresponding sine, cosine values.
$\sin \beta =\dfrac{DE}{DF}=\dfrac{1}{\sqrt{10}}$
Now we know, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we can write
$tan\beta =\dfrac{\sin \beta }{\cos \beta }$
Substituting the corresponding values, we get
$\begin{align}
& \Rightarrow \dfrac{1}{3}=\dfrac{\dfrac{1}{\sqrt{10}}}{\cos \beta } \\
& \Rightarrow \cos \beta =\dfrac{3}{\sqrt{10}} \\
\end{align}$
Now we got all the sine, cosine and tan of $'\beta '$.
Now, we will use the identity,
$\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $
We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;
\[\begin{align}
& \sin \left( \alpha -\beta \right)=\dfrac{4}{5}\times \dfrac{3}{\sqrt{10}}-\dfrac{3}{5}\times \dfrac{1}{\sqrt{10}} \\
& \sin \left( \alpha -\beta \right)=\dfrac{12-3}{5\sqrt{10}}=\dfrac{9}{5\sqrt{10}} \\
\end{align}\]
Now, we see that;
$\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}$
Then $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$
Now, we will use the identity,
$\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $
We know the values of $\sin \alpha ,\cos \alpha ,\sin \beta \text{ and }\cos \beta $. So, by substituting we get;
$\begin{align}
& \cos \left( \alpha -\beta \right)=\dfrac{3}{5}\times \dfrac{3}{\sqrt{10}}+\dfrac{4}{5}\times \dfrac{1}{\sqrt{10}} \\
& =\dfrac{9}{5\sqrt{10}}+\dfrac{4}{5\sqrt{10}}=\dfrac{13}{5\sqrt{10}} \\
\end{align}$
Now, we see that;
$\cos \left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$
Then $\left( \alpha -\beta \right)={{\cos }^{-1}}\left( \dfrac{13}{5\sqrt{10}} \right)$
Now, we will use the identity,
$\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$
As, we got that $\sin \left( \alpha -\beta \right)=\dfrac{9}{5\sqrt{10}}\text{ and cos}\left( \alpha -\beta \right)=\dfrac{13}{5\sqrt{10}}$
So, $\tan \left( \alpha -\beta \right)=\dfrac{9}{13}$
Then$\left( \alpha -\beta \right)={{\tan }^{-1}}\left( \dfrac{9}{13} \right)$
So, the correct answer is option A.
Note: The identities of all the trigonometric ratios must be known by heart by the students to work on these kinds of problems at a quick pace. Also, the calculation part must be done with care to avoid silly mistakes.
Student generally calculate the value of $\left( \alpha -\beta \right)={{\sin }^{-1}}\left( \dfrac{9}{5\sqrt{10}} \right)$, then they stop thinking we got the answer. But they should find other values too for comparing.
Last updated date: 31st May 2023
•
Total views: 328.5k
•
Views today: 5.85k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
