
If \[\alpha \] , \[\beta \ne 0\] , and \[f\left( n \right) = {\alpha ^n} + {\beta ^n}\] and \[\left| {\begin{array}{*{20}{c}}
3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)} \\
{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)} \\
{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}
\end{array}} \right| = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}\] , then K is equal to
A \[\alpha \beta \]
B \[\dfrac{1}{{\alpha \beta }}\]
C 1
D -1
Answer
526.5k+ views
Hint: In linear algebra, determinant is a special number that can be determined from a square matrix. To solve the given functions, we need to consider the LHS part, in which to find the value of K we get LHS = RHS and the value of K. Hence, using matrix elementary functions simplify the given functions in the determinant to get the value of K.
Complete step-by-step answer:
Let us write the given data,
\[\left| {\begin{array}{*{20}{c}}
3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)} \\
{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)} \\
{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}
\end{array}} \right| = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}\]
Let us consider the LHS terms, in which after simplifying we get the RHS terms i.e.,
\[\left| {\begin{array}{*{20}{c}}
3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)} \\
{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)} \\
{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}
\end{array}} \right|\]
We know that, \[f\left( n \right) = {\alpha ^n} + {\beta ^n}\] , hence
\[f\left( 1 \right) = \alpha + \beta \]
\[f\left( 2 \right) = {\alpha ^2} + {\beta ^2}\]
\[f\left( 3 \right) = {\alpha ^3} + {\beta ^3}\]
\[f\left( 4 \right) = {\alpha ^4} + {\beta ^4}\]
Now, substitute all the considered equations in the given determinant as:
\[ = \left| {\begin{array}{*{20}{c}}
3&{1 + \alpha + \beta }&{1 + {\alpha ^2} + {\beta ^2}} \\
{1 + \alpha + \beta }&{1 + {\alpha ^2} + {\beta ^2}}&{1 + {\alpha ^3} + {\beta ^3}} \\
{1 + {\alpha ^2} + {\beta ^2}}&{1 + {\alpha ^3} + {\beta ^3}}&{1 + {\alpha ^4} + {\beta ^4}}
\end{array}} \right|\]
Split the terms, by considering 2 determinants in product form with respect to rows and columns of \[{R_1}{R_2}{R_3}\] and \[{C_1}{C_2}{C_3}\] as:
\[ = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right| \times \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &{{\alpha ^2}} \\
1&\beta &{{\beta ^2}}
\end{array}} \right|\] ……… 1
Let us assume equation 1 as \[A \times B\] .
Now, interchange \[{C_3} \leftrightarrow {R_3}\] of determinant A and transpose the B determinant i.e.,
\[ = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right| \times \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right|\]
As there are common terms involved, we get:
\[ \Rightarrow {\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right|^2}\]
Apply Elementary transformation of column matrix i.e., \[{C_2} \to {C_2} - {C_1}\] and \[{C_3} \to {C_3} - {C_1}\]
\[ = {\left| {\begin{array}{*{20}{c}}
1&0&0 \\
1&{\alpha - 1}&{\beta - 1} \\
1&{{\alpha ^2} - 1}&{{\beta ^2} - 1}
\end{array}} \right|^2}\]
Expanding the terms, as \[{R_2}{C_2}{C_3}\] and \[{R_3}{C_2}{C_3}\] implies to zero, hence we have \[{R_1}{C_1}\left\{ {\left( {{R_2}{C_2}} \right)\left( {{R_3}{C_3}} \right)\left( {{R_3}{C_2}} \right)\left( {{R_2}{C_3}} \right)} \right\}\] i.e.,
\[ \Rightarrow {\left\{ {1\left| {\begin{array}{*{20}{c}}
{\alpha - 1}&{\beta - 1} \\
{{\alpha ^2} - 1}&{{\beta ^2} - 1}
\end{array}} \right|} \right\}^2}\]
Simplify the determinant of the matrix i.e.,
\[\left\{ {{R_1}{C_1} \times {R_2}{C_2} - {R_2}{C_1} \times {R_1}{C_2}} \right\}\] :
\[ \Rightarrow {\left\{ {\left( {\alpha - 1} \right)\left( {{\beta ^2} - 1} \right) - \left( {\beta - 1} \right)\left( {{\alpha ^2} - 1} \right)} \right\}^2}\]
As this is of the form, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] , hence we get:
\[ \Rightarrow {\left\{ {\left( {\alpha - 1} \right)\left( {\beta - 1} \right)\left( {\beta + 1} \right) - \left( {\beta - 1} \right)\left( {\alpha - 1} \right)\left( {\alpha + 1} \right)} \right\}^2}\]
\[ \Rightarrow {\left( {\alpha - 1} \right)^2}{\left( {\beta - 1} \right)^2}{\left\{ {\beta + 1 - \alpha - 1} \right\}^2}\]
As +1 and -1 implies to zero, hence we get:
\[{\left( {\alpha - 1} \right)^2}{\left( {\beta - 1} \right)^2}{\left( {\beta - \alpha } \right)^2}\]
Hence,
\[ \Rightarrow {\left( {\alpha - 1} \right)^2}{\left( {\beta - 1} \right)^2}{\left( {\beta - \alpha } \right)^2} = {\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}\]
Therefore, \[K = 1\] .
Hence, option C is the right answer.
So, the correct answer is “Option C”.
Note: While solving the determinants we have applied elementary column matrix since interchanging of columns makes the functions of the matrix equal to the given function, as an elementary matrix which differs from the identity matrix by one single elementary row. When a system is written horizontally, we can obtain systems equivalent to it by performing elementary transformation of column matrix: multiplying a column by a non-zero constant; adding a multiple of one column to another column; interchanging columns.
Complete step-by-step answer:
Let us write the given data,
\[\left| {\begin{array}{*{20}{c}}
3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)} \\
{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)} \\
{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}
\end{array}} \right| = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}\]
Let us consider the LHS terms, in which after simplifying we get the RHS terms i.e.,
\[\left| {\begin{array}{*{20}{c}}
3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)} \\
{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)} \\
{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}
\end{array}} \right|\]
We know that, \[f\left( n \right) = {\alpha ^n} + {\beta ^n}\] , hence
\[f\left( 1 \right) = \alpha + \beta \]
\[f\left( 2 \right) = {\alpha ^2} + {\beta ^2}\]
\[f\left( 3 \right) = {\alpha ^3} + {\beta ^3}\]
\[f\left( 4 \right) = {\alpha ^4} + {\beta ^4}\]
Now, substitute all the considered equations in the given determinant as:
\[ = \left| {\begin{array}{*{20}{c}}
3&{1 + \alpha + \beta }&{1 + {\alpha ^2} + {\beta ^2}} \\
{1 + \alpha + \beta }&{1 + {\alpha ^2} + {\beta ^2}}&{1 + {\alpha ^3} + {\beta ^3}} \\
{1 + {\alpha ^2} + {\beta ^2}}&{1 + {\alpha ^3} + {\beta ^3}}&{1 + {\alpha ^4} + {\beta ^4}}
\end{array}} \right|\]
Split the terms, by considering 2 determinants in product form with respect to rows and columns of \[{R_1}{R_2}{R_3}\] and \[{C_1}{C_2}{C_3}\] as:
\[ = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right| \times \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &{{\alpha ^2}} \\
1&\beta &{{\beta ^2}}
\end{array}} \right|\] ……… 1
Let us assume equation 1 as \[A \times B\] .
Now, interchange \[{C_3} \leftrightarrow {R_3}\] of determinant A and transpose the B determinant i.e.,
\[ = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right| \times \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right|\]
As there are common terms involved, we get:
\[ \Rightarrow {\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\alpha &\beta \\
1&{{\alpha ^2}}&{{\beta ^2}}
\end{array}} \right|^2}\]
Apply Elementary transformation of column matrix i.e., \[{C_2} \to {C_2} - {C_1}\] and \[{C_3} \to {C_3} - {C_1}\]
\[ = {\left| {\begin{array}{*{20}{c}}
1&0&0 \\
1&{\alpha - 1}&{\beta - 1} \\
1&{{\alpha ^2} - 1}&{{\beta ^2} - 1}
\end{array}} \right|^2}\]
Expanding the terms, as \[{R_2}{C_2}{C_3}\] and \[{R_3}{C_2}{C_3}\] implies to zero, hence we have \[{R_1}{C_1}\left\{ {\left( {{R_2}{C_2}} \right)\left( {{R_3}{C_3}} \right)\left( {{R_3}{C_2}} \right)\left( {{R_2}{C_3}} \right)} \right\}\] i.e.,
\[ \Rightarrow {\left\{ {1\left| {\begin{array}{*{20}{c}}
{\alpha - 1}&{\beta - 1} \\
{{\alpha ^2} - 1}&{{\beta ^2} - 1}
\end{array}} \right|} \right\}^2}\]
Simplify the determinant of the matrix i.e.,
\[\left\{ {{R_1}{C_1} \times {R_2}{C_2} - {R_2}{C_1} \times {R_1}{C_2}} \right\}\] :
\[ \Rightarrow {\left\{ {\left( {\alpha - 1} \right)\left( {{\beta ^2} - 1} \right) - \left( {\beta - 1} \right)\left( {{\alpha ^2} - 1} \right)} \right\}^2}\]
As this is of the form, \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] , hence we get:
\[ \Rightarrow {\left\{ {\left( {\alpha - 1} \right)\left( {\beta - 1} \right)\left( {\beta + 1} \right) - \left( {\beta - 1} \right)\left( {\alpha - 1} \right)\left( {\alpha + 1} \right)} \right\}^2}\]
\[ \Rightarrow {\left( {\alpha - 1} \right)^2}{\left( {\beta - 1} \right)^2}{\left\{ {\beta + 1 - \alpha - 1} \right\}^2}\]
As +1 and -1 implies to zero, hence we get:
\[{\left( {\alpha - 1} \right)^2}{\left( {\beta - 1} \right)^2}{\left( {\beta - \alpha } \right)^2}\]
Hence,
\[ \Rightarrow {\left( {\alpha - 1} \right)^2}{\left( {\beta - 1} \right)^2}{\left( {\beta - \alpha } \right)^2} = {\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}\]
Therefore, \[K = 1\] .
Hence, option C is the right answer.
So, the correct answer is “Option C”.
Note: While solving the determinants we have applied elementary column matrix since interchanging of columns makes the functions of the matrix equal to the given function, as an elementary matrix which differs from the identity matrix by one single elementary row. When a system is written horizontally, we can obtain systems equivalent to it by performing elementary transformation of column matrix: multiplying a column by a non-zero constant; adding a multiple of one column to another column; interchanging columns.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

