
If $\alpha ,\beta ,\gamma ,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to positive quantity $\lambda $ then the value of $4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2}$ is
$
A.{\text{ }}2\sqrt {1 - \lambda } \\
B.{\text{ }}2\sqrt {1 + \lambda } \\
C.{\text{ }}2\sqrt \lambda \\
D.{\text{ }}2\sqrt {\lambda + 2} \\
$
Answer
605.1k+ views
Hint: In this question use the concept that sine is positive in the first and second quadrant and the angles is in ascending order so the order of ascending is $\alpha < \beta < \gamma < \delta $ so, use this concept to reach the solution of the question.
Complete step-by-step answer:
Given condition is
$\alpha ,\beta ,\gamma ,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to positive quantity $\lambda $.
$ \Rightarrow \sin \alpha = \sin \beta = \sin \gamma = \sin \delta = \lambda $………………. (1)
Then we have to find out the value of
$4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2}$…………………. (2)
Now from equation (1)
$\sin \alpha = \sin \beta $
$ \Rightarrow \sin \beta = \sin \left( {\pi - \alpha } \right)$ (As we know sine is positive in first and second quadrant and the angles is in ascending order, the order of ascending is $\alpha < \beta < \gamma < \delta $).
$ \Rightarrow \beta = \pi - \alpha $
Similarly $\left( {\gamma = 2\pi + \alpha } \right),\left( {\delta = 3\pi - \alpha } \right)$.
Now substitute all these values in equation (2) we have
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{{\pi - \alpha }}{2} + 2\sin \dfrac{{2\pi + \alpha }}{2} + \sin \dfrac{{3\pi - \alpha }}{2}$
Now simplify the above equation we have
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \left( {\dfrac{\pi }{2} - \dfrac{\alpha }{2}} \right) + 2\sin \left( {\pi + \dfrac{\alpha }{2}} \right) + \sin \left( {\dfrac{{3\pi }}{2} - \dfrac{\alpha }{2}} \right)$
Now as we know $\left[ {\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta ,\sin \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta } \right]$ so, substitute these values in above equation we have,
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\cos \dfrac{\alpha }{2} - 2\sin \dfrac{\alpha }{2} - \cos \dfrac{\alpha }{2}$
$ \Rightarrow 2\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right)$…………………………. (3)
Now as we know ${\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right)^2} = {\sin ^2}\dfrac{\alpha }{2} + {\cos ^2}\dfrac{\alpha }{2} + 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}$
And the value of ${\sin ^2}\dfrac{\alpha }{2} + {\cos ^2}\dfrac{\alpha }{2} = 1,{\text{ & }}2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = 2\sin \alpha $
$
\Rightarrow {\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right)^2} = 1 + \sin \alpha \\
\Rightarrow \left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right) = \sqrt {1 + \sin \alpha } \\
$
So substitute this value in equation (3) we have,
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2} = 2\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right) = 2\sqrt {1 + \sin \alpha } $
Now from equation (1) we have $\sin \alpha = \lambda $
\[ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2} = 2\sqrt {1 + \lambda } \]
So, this is the required answer.
Hence, option (B) is correct.
Note: In such types of questions angles is in ascending order as $\alpha < \beta < \gamma < \delta $and it is also given that $\sin \alpha = \sin \beta = \sin \gamma = \sin \delta = \lambda $ so, according to property of sine which is stated above, $\alpha $ lies in first quadrant, $\beta $ lies in second quadrant, $\gamma $ lies in after one complete rotation again in first quadrant and $\delta $ lies in after one complete rotation again in second quadrant so first calculate the values of all the angles in terms of $\alpha $as above then substitute these values in the given equation and simplify after simplification use some basic trigonometric properties as above and again simplify as above, we will get the required answer.
Complete step-by-step answer:
Given condition is
$\alpha ,\beta ,\gamma ,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to positive quantity $\lambda $.
$ \Rightarrow \sin \alpha = \sin \beta = \sin \gamma = \sin \delta = \lambda $………………. (1)
Then we have to find out the value of
$4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2}$…………………. (2)
Now from equation (1)
$\sin \alpha = \sin \beta $
$ \Rightarrow \sin \beta = \sin \left( {\pi - \alpha } \right)$ (As we know sine is positive in first and second quadrant and the angles is in ascending order, the order of ascending is $\alpha < \beta < \gamma < \delta $).
$ \Rightarrow \beta = \pi - \alpha $
Similarly $\left( {\gamma = 2\pi + \alpha } \right),\left( {\delta = 3\pi - \alpha } \right)$.
Now substitute all these values in equation (2) we have
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{{\pi - \alpha }}{2} + 2\sin \dfrac{{2\pi + \alpha }}{2} + \sin \dfrac{{3\pi - \alpha }}{2}$
Now simplify the above equation we have
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \left( {\dfrac{\pi }{2} - \dfrac{\alpha }{2}} \right) + 2\sin \left( {\pi + \dfrac{\alpha }{2}} \right) + \sin \left( {\dfrac{{3\pi }}{2} - \dfrac{\alpha }{2}} \right)$
Now as we know $\left[ {\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta ,\sin \left( {\pi + \theta } \right) = - \sin \theta ,\sin \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \cos \theta } \right]$ so, substitute these values in above equation we have,
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\cos \dfrac{\alpha }{2} - 2\sin \dfrac{\alpha }{2} - \cos \dfrac{\alpha }{2}$
$ \Rightarrow 2\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right)$…………………………. (3)
Now as we know ${\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right)^2} = {\sin ^2}\dfrac{\alpha }{2} + {\cos ^2}\dfrac{\alpha }{2} + 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}$
And the value of ${\sin ^2}\dfrac{\alpha }{2} + {\cos ^2}\dfrac{\alpha }{2} = 1,{\text{ & }}2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = 2\sin \alpha $
$
\Rightarrow {\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right)^2} = 1 + \sin \alpha \\
\Rightarrow \left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right) = \sqrt {1 + \sin \alpha } \\
$
So substitute this value in equation (3) we have,
$ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2} = 2\left( {\sin \dfrac{\alpha }{2} + \cos \dfrac{\alpha }{2}} \right) = 2\sqrt {1 + \sin \alpha } $
Now from equation (1) we have $\sin \alpha = \lambda $
\[ \Rightarrow 4\sin \dfrac{\alpha }{2} + 3\sin \dfrac{\beta }{2} + 2\sin \dfrac{\gamma }{2} + \sin \dfrac{\delta }{2} = 2\sqrt {1 + \lambda } \]
So, this is the required answer.
Hence, option (B) is correct.
Note: In such types of questions angles is in ascending order as $\alpha < \beta < \gamma < \delta $and it is also given that $\sin \alpha = \sin \beta = \sin \gamma = \sin \delta = \lambda $ so, according to property of sine which is stated above, $\alpha $ lies in first quadrant, $\beta $ lies in second quadrant, $\gamma $ lies in after one complete rotation again in first quadrant and $\delta $ lies in after one complete rotation again in second quadrant so first calculate the values of all the angles in terms of $\alpha $as above then substitute these values in the given equation and simplify after simplification use some basic trigonometric properties as above and again simplify as above, we will get the required answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

