
If \[\alpha ,\beta ,\gamma \] are the roots of the equation \[{x^3} + px + q = 0\] then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right|\] is
A. \[q\]
B. 0
C. \[p\]
D. \[{p^2} - 2q\]
Answer
568.8k+ views
Hint: First of all, consider the value of the given determinant as \[m\] and then expand it by the first row. Use an algebraic formula to simplify the determinant. Further find out the sum, product and the sum of two roots at a time of the given equation to get the required answer.
Complete step-by-step answer:
Given that \[\alpha ,\beta ,\gamma \] are the roots of the equation \[{x^3} + px + q = 0\].
Now, consider the value of the determinant as \[m\]. So, we have
\[ \Rightarrow m = \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right|\]
Opening the determinant by first row, we have
\[
\Rightarrow m = \alpha \left[ {\gamma \beta - {\alpha ^2}} \right] - \beta \left[ {{\beta ^2} - \alpha \gamma } \right] + \gamma \left[ {\beta \alpha - {\gamma ^2}} \right] \\
\Rightarrow m = \alpha \beta \gamma - {\alpha ^3} + \alpha \beta \gamma - {\beta ^3} + \alpha \beta \gamma - {\gamma ^3} \\
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right)...................................\left( 1 \right) \\
\]
We know that for a cubic equation \[a{x^3} + b{x^2} + cx + d = 0\] the sum of the roots is given by \[\dfrac{{ - b}}{a}\], the sum of two roots at a time is given by \[\dfrac{c}{a}\] and the product of the roots are given by \[\dfrac{{ - d}}{a}\].
Now, for the given equation \[{x^3} + px + q = 0\] we have
Sum of the roots is\[\alpha + \beta + \gamma = \dfrac{{ - 0}}{1} = 0...........\left( 2 \right)\]
Sum of two roots at a time is \[\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{p}{1} = p..............\left( 3 \right)\]
Product of the roots is \[\alpha \beta \gamma = \dfrac{{ - q}}{1} = - q...........\left( 4 \right)\]
We know that
\[
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right) \\
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left[ {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right] \\
\]
By using this formula equation \[\left( 1 \right)\] can be written as
\[
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right) \\
\Rightarrow m = 3\alpha \beta \gamma - \left[ {{{\left( {\alpha + \beta + \gamma } \right)}^3} - 3\left\{ {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - \alpha \beta \gamma } \right\}} \right]...........\left( 5 \right) \\
\]
By substituting \[\left( 2 \right),\left( 3 \right),\left( 4 \right)\] in equation\[\left( 5 \right)\], we get
\[
\Rightarrow m = 3\left( { - q} \right) - \left[ {{{\left( 0 \right)}^3} - 3\left\{ {\left( 0 \right)\left( p \right) - \left( q \right)} \right\}} \right] \\
\Rightarrow m = 3\left( { - q} \right) - \left[ {0 - 3\left( {0 - q} \right)} \right] \\
\Rightarrow m = - 3q - \left[ {0 - 3q} \right] \\
\Rightarrow m = - 3q + 3q \\
\therefore m = 0 \\
\]
Therefore, the value of the given determinant is 0.
So, the correct answer is “Option B”.
Note: For a cubic equation \[a{x^3} + b{x^2} + cx + d = 0\] the sum of the roots is given by \[\dfrac{{ - b}}{a}\], the sum of two roots at a time is given by \[\dfrac{c}{a}\] and the product of the roots are given by \[\dfrac{{ - d}}{a}\]. Always remember the algebraic formula \[{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right)\] to solve these kinds of problems.
Complete step-by-step answer:
Given that \[\alpha ,\beta ,\gamma \] are the roots of the equation \[{x^3} + px + q = 0\].
Now, consider the value of the determinant as \[m\]. So, we have
\[ \Rightarrow m = \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right|\]
Opening the determinant by first row, we have
\[
\Rightarrow m = \alpha \left[ {\gamma \beta - {\alpha ^2}} \right] - \beta \left[ {{\beta ^2} - \alpha \gamma } \right] + \gamma \left[ {\beta \alpha - {\gamma ^2}} \right] \\
\Rightarrow m = \alpha \beta \gamma - {\alpha ^3} + \alpha \beta \gamma - {\beta ^3} + \alpha \beta \gamma - {\gamma ^3} \\
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right)...................................\left( 1 \right) \\
\]
We know that for a cubic equation \[a{x^3} + b{x^2} + cx + d = 0\] the sum of the roots is given by \[\dfrac{{ - b}}{a}\], the sum of two roots at a time is given by \[\dfrac{c}{a}\] and the product of the roots are given by \[\dfrac{{ - d}}{a}\].
Now, for the given equation \[{x^3} + px + q = 0\] we have
Sum of the roots is\[\alpha + \beta + \gamma = \dfrac{{ - 0}}{1} = 0...........\left( 2 \right)\]
Sum of two roots at a time is \[\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{p}{1} = p..............\left( 3 \right)\]
Product of the roots is \[\alpha \beta \gamma = \dfrac{{ - q}}{1} = - q...........\left( 4 \right)\]
We know that
\[
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right) \\
{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left[ {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right] \\
\]
By using this formula equation \[\left( 1 \right)\] can be written as
\[
\Rightarrow m = 3\alpha \beta \gamma - \left( {{\alpha ^3} + {\beta ^3} + {\gamma ^3}} \right) \\
\Rightarrow m = 3\alpha \beta \gamma - \left[ {{{\left( {\alpha + \beta + \gamma } \right)}^3} - 3\left\{ {\left( {\alpha + \beta + \gamma } \right)\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - \alpha \beta \gamma } \right\}} \right]...........\left( 5 \right) \\
\]
By substituting \[\left( 2 \right),\left( 3 \right),\left( 4 \right)\] in equation\[\left( 5 \right)\], we get
\[
\Rightarrow m = 3\left( { - q} \right) - \left[ {{{\left( 0 \right)}^3} - 3\left\{ {\left( 0 \right)\left( p \right) - \left( q \right)} \right\}} \right] \\
\Rightarrow m = 3\left( { - q} \right) - \left[ {0 - 3\left( {0 - q} \right)} \right] \\
\Rightarrow m = - 3q - \left[ {0 - 3q} \right] \\
\Rightarrow m = - 3q + 3q \\
\therefore m = 0 \\
\]
Therefore, the value of the given determinant is 0.
So, the correct answer is “Option B”.
Note: For a cubic equation \[a{x^3} + b{x^2} + cx + d = 0\] the sum of the roots is given by \[\dfrac{{ - b}}{a}\], the sum of two roots at a time is given by \[\dfrac{c}{a}\] and the product of the roots are given by \[\dfrac{{ - d}}{a}\]. Always remember the algebraic formula \[{\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3abc\left( {ab + bc + ca} \right)\] to solve these kinds of problems.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

