
If $ \alpha ,\beta ,\gamma $ are the cube roots of $ 8 $ then find the value of $ \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ .
(A) $ 0 $
(B) $ 1 $
(C) $ 8 $
(D) $ 2 $
Answer
577.2k+ views
Hint: In this problem, first we will find the cube roots of the number $ 8 $ . Then, we will find the sum of these roots. Then, we will evaluate the required value of determinant by using row-operations.
Complete step-by-step answer:
In this problem, it is given that $ \alpha ,\beta ,\gamma $ are the cube roots of $ 8 $ . Let us find the cube roots of $ 8 $ . For this, we have to solve the equation $ x = {\left( 8 \right)^{\dfrac{1}{3}}} $ . That is, we have to solve the equation $ {x^3} - 8 = 0 \cdots \cdots \left( 1 \right) $ . We know that $ {a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) $ . Use this information to solve the equation $ \left( 1 \right) $ . So, we can write
$
{x^3} - 8 = 0 \\
\Rightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) = 0 \\
\Rightarrow x - 2 = 0,\quad {x^2} + 2x + 4 = 0 \\
\Rightarrow x = 2,\quad {x^2} + 2x + 4 = 0 \;
$
Let us solve the second equation $ {x^2} + 2x + 4 = 0 $ by using the formula $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ . Note that here $ a = 1,b = 2,c = 4 $ . Hence, we can write
$
{x^2} + 2x + 4 = 0 \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 - 16} }}{2} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt { - 12} }}{2} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt { - 1 \times 4 \times 3} }}{2} \\
\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 3 i}}{2}\quad \left[ {\because i = \sqrt { - 1} } \right] \\
\Rightarrow x = - 1 \pm \sqrt 3 i \\
\Rightarrow x = - 1 + \sqrt 3 i,\quad x = - 1 - \sqrt 3 i \;
$
Hence, we have three roots $ \alpha = 2,\quad \beta = - 1 + \sqrt 3 i,\quad \gamma = - 1 - \sqrt 3 i $ .
Let us find the sum of these three roots. So, we can write
$ \alpha + \beta + \gamma = 2 + \left( { - 1 + \sqrt 3 i} \right) + \left( { - 1 - \sqrt 3 i} \right) = 0 $
Now we are going to find the value of $ \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ by using row-operations.
Let us say $ D = \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ . Apply $ {R_1} \to {R_1} + {R_2} + {R_3} $ . So, we can write
$ D = \left| {\begin{array}{*{20}{c}}
{\alpha + \beta + \gamma }&{\beta + \gamma + \alpha }&{\gamma + \alpha + \beta } \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $
Taking $ \alpha + \beta + \gamma $ common from the first row. So, we can write
$
D = \left( {\alpha + \beta + \gamma } \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| \\
\Rightarrow D = 0\left| {\begin{array}{*{20}{c}}
1&1&1 \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right|\quad \left[ {\because \alpha + \beta + \gamma = 0} \right] \\
\Rightarrow D = 0 \;
$
Hence, if $ \alpha ,\beta ,\gamma $ are the cube roots of $ 8 $ then value of $ \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ is zero.
Note: Sometimes it is difficult to evaluate the determinant directly. So, in that case we can use row-operations to evaluate the determinant. To find cube roots of any number $ N $ , we have to solve the equation $ {x^3} - N = 0 $ . To solve the quadratic equation $ a{x^2} + bx + c = 0 $ , we can use the formula $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ . In the given problem, we get one real root $ x = 2 $ and two complex roots $ x = - 1 \pm \sqrt 3 i $ . Every cubic equation has at least one real root.
Complete step-by-step answer:
In this problem, it is given that $ \alpha ,\beta ,\gamma $ are the cube roots of $ 8 $ . Let us find the cube roots of $ 8 $ . For this, we have to solve the equation $ x = {\left( 8 \right)^{\dfrac{1}{3}}} $ . That is, we have to solve the equation $ {x^3} - 8 = 0 \cdots \cdots \left( 1 \right) $ . We know that $ {a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) $ . Use this information to solve the equation $ \left( 1 \right) $ . So, we can write
$
{x^3} - 8 = 0 \\
\Rightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) = 0 \\
\Rightarrow x - 2 = 0,\quad {x^2} + 2x + 4 = 0 \\
\Rightarrow x = 2,\quad {x^2} + 2x + 4 = 0 \;
$
Let us solve the second equation $ {x^2} + 2x + 4 = 0 $ by using the formula $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ . Note that here $ a = 1,b = 2,c = 4 $ . Hence, we can write
$
{x^2} + 2x + 4 = 0 \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 - 16} }}{2} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt { - 12} }}{2} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt { - 1 \times 4 \times 3} }}{2} \\
\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 3 i}}{2}\quad \left[ {\because i = \sqrt { - 1} } \right] \\
\Rightarrow x = - 1 \pm \sqrt 3 i \\
\Rightarrow x = - 1 + \sqrt 3 i,\quad x = - 1 - \sqrt 3 i \;
$
Hence, we have three roots $ \alpha = 2,\quad \beta = - 1 + \sqrt 3 i,\quad \gamma = - 1 - \sqrt 3 i $ .
Let us find the sum of these three roots. So, we can write
$ \alpha + \beta + \gamma = 2 + \left( { - 1 + \sqrt 3 i} \right) + \left( { - 1 - \sqrt 3 i} \right) = 0 $
Now we are going to find the value of $ \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ by using row-operations.
Let us say $ D = \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ . Apply $ {R_1} \to {R_1} + {R_2} + {R_3} $ . So, we can write
$ D = \left| {\begin{array}{*{20}{c}}
{\alpha + \beta + \gamma }&{\beta + \gamma + \alpha }&{\gamma + \alpha + \beta } \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $
Taking $ \alpha + \beta + \gamma $ common from the first row. So, we can write
$
D = \left( {\alpha + \beta + \gamma } \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| \\
\Rightarrow D = 0\left| {\begin{array}{*{20}{c}}
1&1&1 \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right|\quad \left[ {\because \alpha + \beta + \gamma = 0} \right] \\
\Rightarrow D = 0 \;
$
Hence, if $ \alpha ,\beta ,\gamma $ are the cube roots of $ 8 $ then value of $ \left| {\begin{array}{*{20}{c}}
\alpha &\beta &\gamma \\
\beta &\gamma &\alpha \\
\gamma &\alpha &\beta
\end{array}} \right| $ is zero.
Note: Sometimes it is difficult to evaluate the determinant directly. So, in that case we can use row-operations to evaluate the determinant. To find cube roots of any number $ N $ , we have to solve the equation $ {x^3} - N = 0 $ . To solve the quadratic equation $ a{x^2} + bx + c = 0 $ , we can use the formula $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ . In the given problem, we get one real root $ x = 2 $ and two complex roots $ x = - 1 \pm \sqrt 3 i $ . Every cubic equation has at least one real root.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

