
If $ {\alpha ^2} + {\beta ^2} + {\gamma ^2} = 1 $ , then highest integral value of $ \alpha \beta + \beta \gamma + \gamma \alpha $ is
A.0
B.1
C.2
D.3
Answer
483.6k+ views
Hint: In this question, we need to find highest integral value of $ \alpha \beta + \beta \gamma + \gamma \alpha $ , such that $ {\alpha ^2} + {\beta ^2} + {\gamma ^2} = 1 $ . For this, we will use identity $ {\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) $ and relation the concept that the arithmetic mean is always greater than or is equals to the geometric mean. Then, find the range in which $ \alpha \beta + \beta \gamma + \gamma \alpha $ lies and the highest integral value of that range will be our required answer.
Complete step-by-step answer:
We know that $ {\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - - - - (i) $
It is given, $ {\alpha ^2} + {\beta ^2} + {\gamma ^2} = 1 - - - - (ii) $
Therefore, substituting the value of equation (ii) in the equation (i) we get
\[
\Rightarrow {\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \\
= 1 + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - - - - (iii) \\
\]
We know that $ \alpha + \beta + \gamma \geqslant 0 $ for all real $ \alpha ,\beta ,\gamma $
Therefore, equation (iii) can be written as:
\[
\Rightarrow {\left( {\alpha + \beta + \gamma } \right)^2} \geqslant 0 \\
1 + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \geqslant 0 - - - - (iv) \\
\]
Equation (iv) can be re-written as:
\[
\Rightarrow 1 + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \geqslant 0 \\
\alpha \beta + \beta \gamma + \gamma \alpha \geqslant \dfrac{{ - 1}}{2} - - - - (v) \\
\]
We know that the Arithmetic Mean of any two real numbers is always greater than their Geometric Mean i.e $ \dfrac{{a + b}}{2} \geqslant \sqrt {ab} - - - - (vi) $ .
Let $ a = {\alpha ^2} $ and $ b = {\beta ^2} $ .
Substitute the values of ‘a’ and ‘b’ in the equation (vi), we get
$
\Rightarrow \dfrac{{a + b}}{2} \geqslant \sqrt {ab} \\
\Rightarrow \dfrac{{{\alpha ^2} + {\beta ^2}}}{2} \geqslant \sqrt {{\alpha ^2} \times {\beta ^2}} \\
\Rightarrow {\alpha ^2} + {\beta ^2} \geqslant 2\alpha \beta - - - - (vii) \\
$
Similarly,
$ {\alpha ^2} + {\gamma ^2} \geqslant 2\alpha \gamma - - - - (viii) $
And,
\[{\beta ^2} + {\gamma ^2} \geqslant 2\beta \gamma - - - - (ix)\]
Adding equations (vii), (viii) and (ix), we get
\[
\Rightarrow 2\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2}} \right) \geqslant 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \\
\Rightarrow \left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \leqslant 1 - - - - (x) \\
\]
From equations (v) and (x), we have
$ \Rightarrow \dfrac{{ - 1}}{2} \leqslant \left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \leqslant 1 $
Therefore, \[\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)\] lies in interval $ \left[ {\dfrac{{ - 1}}{2},1} \right] $ .
Hence, the highest integral value is 1.
So, the correct answer is “Option B”.
Note: It is interesting to note that the value of the arithmetic mean is always greater or equals to the geometric mean. Arithmetic mean is the average value of the quantities involved in the calculations while the geometric mean is the square root of the product of the quantities involved in the calculations.
Complete step-by-step answer:
We know that $ {\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - - - - (i) $
It is given, $ {\alpha ^2} + {\beta ^2} + {\gamma ^2} = 1 - - - - (ii) $
Therefore, substituting the value of equation (ii) in the equation (i) we get
\[
\Rightarrow {\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \\
= 1 + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) - - - - (iii) \\
\]
We know that $ \alpha + \beta + \gamma \geqslant 0 $ for all real $ \alpha ,\beta ,\gamma $
Therefore, equation (iii) can be written as:
\[
\Rightarrow {\left( {\alpha + \beta + \gamma } \right)^2} \geqslant 0 \\
1 + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \geqslant 0 - - - - (iv) \\
\]
Equation (iv) can be re-written as:
\[
\Rightarrow 1 + 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \geqslant 0 \\
\alpha \beta + \beta \gamma + \gamma \alpha \geqslant \dfrac{{ - 1}}{2} - - - - (v) \\
\]
We know that the Arithmetic Mean of any two real numbers is always greater than their Geometric Mean i.e $ \dfrac{{a + b}}{2} \geqslant \sqrt {ab} - - - - (vi) $ .
Let $ a = {\alpha ^2} $ and $ b = {\beta ^2} $ .
Substitute the values of ‘a’ and ‘b’ in the equation (vi), we get
$
\Rightarrow \dfrac{{a + b}}{2} \geqslant \sqrt {ab} \\
\Rightarrow \dfrac{{{\alpha ^2} + {\beta ^2}}}{2} \geqslant \sqrt {{\alpha ^2} \times {\beta ^2}} \\
\Rightarrow {\alpha ^2} + {\beta ^2} \geqslant 2\alpha \beta - - - - (vii) \\
$
Similarly,
$ {\alpha ^2} + {\gamma ^2} \geqslant 2\alpha \gamma - - - - (viii) $
And,
\[{\beta ^2} + {\gamma ^2} \geqslant 2\beta \gamma - - - - (ix)\]
Adding equations (vii), (viii) and (ix), we get
\[
\Rightarrow 2\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2}} \right) \geqslant 2\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \\
\Rightarrow \left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \leqslant 1 - - - - (x) \\
\]
From equations (v) and (x), we have
$ \Rightarrow \dfrac{{ - 1}}{2} \leqslant \left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right) \leqslant 1 $
Therefore, \[\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)\] lies in interval $ \left[ {\dfrac{{ - 1}}{2},1} \right] $ .
Hence, the highest integral value is 1.
So, the correct answer is “Option B”.
Note: It is interesting to note that the value of the arithmetic mean is always greater or equals to the geometric mean. Arithmetic mean is the average value of the quantities involved in the calculations while the geometric mean is the square root of the product of the quantities involved in the calculations.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

The largest brackish water lake in India is A Wular class 9 biology CBSE
