
If $A=\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]$ , then the determinant of the matrix ${{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}}$ is
A. $2014$
B. $2016$
C. $-175$
D. $-25$
Answer
499.5k+ views
Hint: At first, we have to take ${{A}^{2014}}$ common from the expression and get \[{{A}^{2014}}\left( {{A}^{2}}-2A-I \right)\] . After that, we find the value of the determinant $\left| A \right|$ and find the value of the matrix ${{A}^{2}}-2A-I$ which come out to be $-1$ and $\left[ \begin{matrix}
20 & 5 \\
-15 & -5 \\
\end{matrix} \right]$ respectively. The value of the determinant $\left| {{A}^{2}}-2A-I \right|$ will then be $-25$ . We then apply the property $\left| AB \right|=\left| A \right|\left| B \right|$ to $\left| {{A}^{2014}}\left( {{A}^{2}}-2A-I \right) \right|$ and get \[\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|\] . Again, we apply the property $\left| {{A}^{n}} \right|={{\left| A \right|}^{n}}$ and get the value of \[\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|={{\left| A \right|}^{2014}}\left| {{A}^{2}}-2A-I \right|\] .
Complete step by step answer:
The matrix that we are given in this problem is,
$A=\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]$
We know that for a $2\times 2$ matrix say $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ , its determinant will be $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=ad-bc$ . Applying this to the given matrix, we get,
$\begin{align}
& \Rightarrow \left| A \right|=\left| \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right|=\left( -4 \right)\times 1-\left( -1 \right)\times 3=-4+3 \\
& \Rightarrow \left| A \right|=-1....\left( i \right) \\
\end{align}$
The matrix that we need to evaluate is,
${{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}}$
After taking ${{A}^{2014}}$ common from the expression, this matrix can be rewritten as,
\[\Rightarrow {{A}^{2014}}\left( {{A}^{2}}-2A-I \right)\]
The determinant of the matrix will then be,
\[\Rightarrow \left| {{A}^{2014}}\left( {{A}^{2}}-2A-I \right) \right|\]
Now, we know the property of determinant which says that $\left| AB \right|=\left| A \right|\left| B \right|$ . Applying this to the above determinant, the above determinant thus becomes,
\[\Rightarrow \left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|\]
Now, we need to find the value of the matrix \[{{A}^{2}}-2A-I\] and then find out its determinant. The matrix will be,
$\begin{align}
& \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]-\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix}
16-3 & 4-1 \\
-12+3 & -3+1 \\
\end{matrix} \right]-\left[ \begin{matrix}
-8 & -2 \\
6 & 2 \\
\end{matrix} \right]-\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix}
20 & 5 \\
-15 & -5 \\
\end{matrix} \right] \\
\end{align}$
The determinant of this matrix will then be,
$\begin{align}
& \Rightarrow \left| {{A}^{2}}-2A-I \right|=\left| \begin{matrix}
20 & 5 \\
-15 & -5 \\
\end{matrix} \right|=20\left( -5 \right)-5\left( -15 \right) \\
& \Rightarrow \left| {{A}^{2}}-2A-I \right|=-25....\left( ii \right) \\
\end{align}$
We know the property of the determinant which says that the determinant of a matrix which is raised to a power is equal to the determinant being raised to the same power. This means,
$\Rightarrow \left| {{A}^{2014}} \right|={{\left| A \right|}^{2014}}$
The value of the determinant \[\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-1 \right|\] thus becomes,
\[\Rightarrow \left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-1 \right|={{\left( -1 \right)}^{2014}}\times \left( -25 \right)=-25\]
Thus, we can conclude that the value of the determinant will be $-25$
So, the correct answer is “Option D”.
Note: In order to solve this problem, we must be accustomed with the various properties of matrices and determinants. Forgetting one important thing will make us unable to solve the problem. Also, we should avoid the common mistake of taking the determinant as $\left| {{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}} \right|=\left| {{A}^{2016}} \right|-2\left| {{A}^{2015}} \right|-\left| {{A}^{2014}} \right|$ .
20 & 5 \\
-15 & -5 \\
\end{matrix} \right]$ respectively. The value of the determinant $\left| {{A}^{2}}-2A-I \right|$ will then be $-25$ . We then apply the property $\left| AB \right|=\left| A \right|\left| B \right|$ to $\left| {{A}^{2014}}\left( {{A}^{2}}-2A-I \right) \right|$ and get \[\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|\] . Again, we apply the property $\left| {{A}^{n}} \right|={{\left| A \right|}^{n}}$ and get the value of \[\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|={{\left| A \right|}^{2014}}\left| {{A}^{2}}-2A-I \right|\] .
Complete step by step answer:
The matrix that we are given in this problem is,
$A=\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]$
We know that for a $2\times 2$ matrix say $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ , its determinant will be $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=ad-bc$ . Applying this to the given matrix, we get,
$\begin{align}
& \Rightarrow \left| A \right|=\left| \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right|=\left( -4 \right)\times 1-\left( -1 \right)\times 3=-4+3 \\
& \Rightarrow \left| A \right|=-1....\left( i \right) \\
\end{align}$
The matrix that we need to evaluate is,
${{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}}$
After taking ${{A}^{2014}}$ common from the expression, this matrix can be rewritten as,
\[\Rightarrow {{A}^{2014}}\left( {{A}^{2}}-2A-I \right)\]
The determinant of the matrix will then be,
\[\Rightarrow \left| {{A}^{2014}}\left( {{A}^{2}}-2A-I \right) \right|\]
Now, we know the property of determinant which says that $\left| AB \right|=\left| A \right|\left| B \right|$ . Applying this to the above determinant, the above determinant thus becomes,
\[\Rightarrow \left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-I \right|\]
Now, we need to find the value of the matrix \[{{A}^{2}}-2A-I\] and then find out its determinant. The matrix will be,
$\begin{align}
& \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
-4 & -1 \\
3 & 1 \\
\end{matrix} \right]-\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix}
16-3 & 4-1 \\
-12+3 & -3+1 \\
\end{matrix} \right]-\left[ \begin{matrix}
-8 & -2 \\
6 & 2 \\
\end{matrix} \right]-\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& \Rightarrow {{A}^{2}}-2A-I=\left[ \begin{matrix}
20 & 5 \\
-15 & -5 \\
\end{matrix} \right] \\
\end{align}$
The determinant of this matrix will then be,
$\begin{align}
& \Rightarrow \left| {{A}^{2}}-2A-I \right|=\left| \begin{matrix}
20 & 5 \\
-15 & -5 \\
\end{matrix} \right|=20\left( -5 \right)-5\left( -15 \right) \\
& \Rightarrow \left| {{A}^{2}}-2A-I \right|=-25....\left( ii \right) \\
\end{align}$
We know the property of the determinant which says that the determinant of a matrix which is raised to a power is equal to the determinant being raised to the same power. This means,
$\Rightarrow \left| {{A}^{2014}} \right|={{\left| A \right|}^{2014}}$
The value of the determinant \[\left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-1 \right|\] thus becomes,
\[\Rightarrow \left| {{A}^{2014}} \right|\left| {{A}^{2}}-2A-1 \right|={{\left( -1 \right)}^{2014}}\times \left( -25 \right)=-25\]
Thus, we can conclude that the value of the determinant will be $-25$
So, the correct answer is “Option D”.
Note: In order to solve this problem, we must be accustomed with the various properties of matrices and determinants. Forgetting one important thing will make us unable to solve the problem. Also, we should avoid the common mistake of taking the determinant as $\left| {{A}^{2016}}-2{{A}^{2015}}-{{A}^{2014}} \right|=\left| {{A}^{2016}} \right|-2\left| {{A}^{2015}} \right|-\left| {{A}^{2014}} \right|$ .
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

