
If $A=\left[ \begin{matrix}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b \\
\end{matrix} \right]$ is a matrix satisfying the equation $A{{A}^{T}}=9I$ where $I$ is $3\times 3$ identity matrix, then the ordered pair (a, b) is equal to
(a) (-2, -1)
(b) (-2, 1)
(c) (2, 1)
(d) (2, -1)
Answer
615.6k+ views
Hint: Write the transpose of a matrix by interchanging the value of entries in each row and column. Multiply the matrix and is transpose using laws of matrix multiplication. Write the $3\times 3$ identity matrix. Substitute the values given in the equation $A{{A}^{T}}=9I$ and compare the terms on both sides to find the value of variables ‘a’ and ‘b’.
Complete step-by-step answer:
We have the matrix $A=\left[ \begin{matrix}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b \\
\end{matrix} \right]$ such that $A{{A}^{T}}=9I$. We have to calculate the values of variables ‘a’ and ‘b’.
We will write the transpose of a given matrix by interchanging the value of entries in each row and column.
Thus, the transpose of the matrix $A=\left[ \begin{matrix}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b \\
\end{matrix} \right]$ is ${{A}^{T}}=\left[ \begin{matrix}
1 & 2 & a \\
2 & 1 & 2 \\
2 & -2 & b \\
\end{matrix} \right]$.
We will now multiply both the matrices using the law of matrix multiplication.
Let $A={{\left( {{a}_{ij}} \right)}_{n\times n}}$ and $B={{\left( {{b}_{jk}} \right)}_{n\times n}}$ be two matrices. The product of two matrices is $AB={{\left( \sum\limits_{j=1}^{3}{{{a}_{ij}}{{b}_{jk}}} \right)}_{ik}}$.
Thus, we have $A{{A}^{T}}=\left[ \begin{matrix}
1\left( 1 \right)+2\left( 2 \right)+2\left( 2 \right) & 1\left( 2 \right)+2\left( 1 \right)+2\left( -2 \right) & 1\left( a \right)+2\left( 2 \right)+2\left( b \right) \\
2\left( 1 \right)+1\left( 2 \right)-2\left( 2 \right) & 2\left( 2 \right)+1\left( 1 \right)-2\left( -2 \right) & 2\left( a \right)+1\left( 2 \right)-2\left( b \right) \\
a\left( 1 \right)+2\left( 2 \right)+2\left( b \right) & a\left( 2 \right)+2\left( 1 \right)+b\left( -2 \right) & a\left( a \right)+2\left( 2 \right)+b\left( b \right) \\
\end{matrix} \right]$.
Further simplifying the above expression, we have $A{{A}^{T}}=\left[ \begin{matrix}
9 & 0 & a+4+2b \\
0 & 9 & 2a+2-2b \\
a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\
\end{matrix} \right]$.
We know that $A{{A}^{T}}=9I$, where I is the $3\times 3$ matrix. Thus, $I=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$.
So, we have $A{{A}^{T}}=9I=9\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]$.
We know that $A{{A}^{T}}=\left[ \begin{matrix}
9 & 0 & a+4+2b \\
0 & 9 & 2a+2-2b \\
a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\
\end{matrix} \right]$.
Thus, we have $\left[ \begin{matrix}
9 & 0 & a+4+2b \\
0 & 9 & 2a+2-2b \\
a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]$.
Comparing each corresponding term in both the matrices, we have $a+2b+4=0.....\left( 1 \right)$ and $2a-2b+2=0.....\left( 2 \right)$.
We will now solve these two linear equations by the elimination method.
Adding both the equations, we have $\left( a+2b+4 \right)+\left( 2a-2b+2 \right)=0$.
Thus, we have $3a+6=0$.
Rearranging the terms, we have $a=\dfrac{-6}{3}=-2.....\left( 3 \right)$.
Substituting equation (3) in equation (1), we have $-2+2b+4=0$. Simplifying this equation, we have $2b+2=0\Rightarrow b=\dfrac{-2}{2}=-1$.
Hence, we have $\left( a,b \right)=\left( -2,-1 \right)$, which is option (a).
Note: One must know the definition of the transpose of a matrix. We also need to keep in mind that matrix multiplication is not commutative, i.e., for any two matrices A and B, we have $AB\ne BA$. While multiplying two matrices, one must keep in mind that the number of columns of the first matrix must be equal to the number of rows of the second matrix.
Complete step-by-step answer:
We have the matrix $A=\left[ \begin{matrix}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b \\
\end{matrix} \right]$ such that $A{{A}^{T}}=9I$. We have to calculate the values of variables ‘a’ and ‘b’.
We will write the transpose of a given matrix by interchanging the value of entries in each row and column.
Thus, the transpose of the matrix $A=\left[ \begin{matrix}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b \\
\end{matrix} \right]$ is ${{A}^{T}}=\left[ \begin{matrix}
1 & 2 & a \\
2 & 1 & 2 \\
2 & -2 & b \\
\end{matrix} \right]$.
We will now multiply both the matrices using the law of matrix multiplication.
Let $A={{\left( {{a}_{ij}} \right)}_{n\times n}}$ and $B={{\left( {{b}_{jk}} \right)}_{n\times n}}$ be two matrices. The product of two matrices is $AB={{\left( \sum\limits_{j=1}^{3}{{{a}_{ij}}{{b}_{jk}}} \right)}_{ik}}$.
Thus, we have $A{{A}^{T}}=\left[ \begin{matrix}
1\left( 1 \right)+2\left( 2 \right)+2\left( 2 \right) & 1\left( 2 \right)+2\left( 1 \right)+2\left( -2 \right) & 1\left( a \right)+2\left( 2 \right)+2\left( b \right) \\
2\left( 1 \right)+1\left( 2 \right)-2\left( 2 \right) & 2\left( 2 \right)+1\left( 1 \right)-2\left( -2 \right) & 2\left( a \right)+1\left( 2 \right)-2\left( b \right) \\
a\left( 1 \right)+2\left( 2 \right)+2\left( b \right) & a\left( 2 \right)+2\left( 1 \right)+b\left( -2 \right) & a\left( a \right)+2\left( 2 \right)+b\left( b \right) \\
\end{matrix} \right]$.
Further simplifying the above expression, we have $A{{A}^{T}}=\left[ \begin{matrix}
9 & 0 & a+4+2b \\
0 & 9 & 2a+2-2b \\
a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\
\end{matrix} \right]$.
We know that $A{{A}^{T}}=9I$, where I is the $3\times 3$ matrix. Thus, $I=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$.
So, we have $A{{A}^{T}}=9I=9\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]$.
We know that $A{{A}^{T}}=\left[ \begin{matrix}
9 & 0 & a+4+2b \\
0 & 9 & 2a+2-2b \\
a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\
\end{matrix} \right]$.
Thus, we have $\left[ \begin{matrix}
9 & 0 & a+4+2b \\
0 & 9 & 2a+2-2b \\
a+4+2b & 2a+2-2b & {{a}^{2}}+4+{{b}^{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]$.
Comparing each corresponding term in both the matrices, we have $a+2b+4=0.....\left( 1 \right)$ and $2a-2b+2=0.....\left( 2 \right)$.
We will now solve these two linear equations by the elimination method.
Adding both the equations, we have $\left( a+2b+4 \right)+\left( 2a-2b+2 \right)=0$.
Thus, we have $3a+6=0$.
Rearranging the terms, we have $a=\dfrac{-6}{3}=-2.....\left( 3 \right)$.
Substituting equation (3) in equation (1), we have $-2+2b+4=0$. Simplifying this equation, we have $2b+2=0\Rightarrow b=\dfrac{-2}{2}=-1$.
Hence, we have $\left( a,b \right)=\left( -2,-1 \right)$, which is option (a).
Note: One must know the definition of the transpose of a matrix. We also need to keep in mind that matrix multiplication is not commutative, i.e., for any two matrices A and B, we have $AB\ne BA$. While multiplying two matrices, one must keep in mind that the number of columns of the first matrix must be equal to the number of rows of the second matrix.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

