
If $a\le {{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x\le b$, then find the value of a and b.
A. $a=\dfrac{\pi }{4},b=\dfrac{3\pi }{4}$
B. $a=0,b=\dfrac{\pi }{2}$
C. $a=\dfrac{\pi }{2},b=\pi $
D. none of these
Answer
573.3k+ views
Hint: We try to find the identity for ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. From the domain of both ${{\sin }^{-1}}x$ and ${{\cos }^{-1}}x$, we try to find the maximum and minimum value of $g\left( x \right)={{\tan }^{-1}}x$. Putting the end values of $x=-1$ and $x=1$, we get the values of a and b.
Complete step-by-step answer:
We have the identity formula of ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ when $x\in \left[ -1,1 \right]$.
We also know the domain of both ${{\sin }^{-1}}x$ and ${{\cos }^{-1}}x$ is $\left[ -1,1 \right]$.
So, for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ to be defined we have to take the domain as $\left[ -1,1 \right]$.
Now ${{\tan }^{-1}}x$ is an increasing function as if $g\left( x \right)={{\tan }^{-1}}x$ and ${{g}^{'}}\left( x \right)=\dfrac{1}{1+{{x}^{2}}}>0$.
So, we can say at point $x=-1$, it has minimum value for $g\left( x \right)={{\tan }^{-1}}x$ and at point $x=1$, it has maximum value for $g\left( x \right)={{\tan }^{-1}}x$.
So, the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ depends on totally $g\left( x \right)={{\tan }^{-1}}x$. The main function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ attains minimum value at $x=-1$ and maximum value at point $x=1$.
So, we can say at point $x=-1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( -1 \right)={{\tan }^{-1}}\left( -1 \right)=\dfrac{-\pi }{4}$ and at point $x=1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( 1 \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}$.
Now we find the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$.
At point $x=-1$, the minimum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}-\dfrac{\pi }{4}=\dfrac{\pi }{4}$ and at point $x=1$, the maximum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}+\dfrac{\pi }{4}=\dfrac{3\pi }{4}$.
So, for $a\le {{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x\le b$, the value of a and b is $a=\dfrac{\pi }{4},b=\dfrac{3\pi }{4}$.
So, the correct answer is “Option A”.
Note: We can’t change the domain for the function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$. The $\left[ -1,1 \right]$ range is the key to find the maximum and minimum value. The principal value of $g\left( x \right)={{\tan }^{-1}}x$ is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$.
Complete step-by-step answer:
We have the identity formula of ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ when $x\in \left[ -1,1 \right]$.
We also know the domain of both ${{\sin }^{-1}}x$ and ${{\cos }^{-1}}x$ is $\left[ -1,1 \right]$.
So, for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ to be defined we have to take the domain as $\left[ -1,1 \right]$.
Now ${{\tan }^{-1}}x$ is an increasing function as if $g\left( x \right)={{\tan }^{-1}}x$ and ${{g}^{'}}\left( x \right)=\dfrac{1}{1+{{x}^{2}}}>0$.
So, we can say at point $x=-1$, it has minimum value for $g\left( x \right)={{\tan }^{-1}}x$ and at point $x=1$, it has maximum value for $g\left( x \right)={{\tan }^{-1}}x$.
So, the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ depends on totally $g\left( x \right)={{\tan }^{-1}}x$. The main function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ attains minimum value at $x=-1$ and maximum value at point $x=1$.
So, we can say at point $x=-1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( -1 \right)={{\tan }^{-1}}\left( -1 \right)=\dfrac{-\pi }{4}$ and at point $x=1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( 1 \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}$.
Now we find the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$.
At point $x=-1$, the minimum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}-\dfrac{\pi }{4}=\dfrac{\pi }{4}$ and at point $x=1$, the maximum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}+\dfrac{\pi }{4}=\dfrac{3\pi }{4}$.
So, for $a\le {{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x\le b$, the value of a and b is $a=\dfrac{\pi }{4},b=\dfrac{3\pi }{4}$.
So, the correct answer is “Option A”.
Note: We can’t change the domain for the function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$. The $\left[ -1,1 \right]$ range is the key to find the maximum and minimum value. The principal value of $g\left( x \right)={{\tan }^{-1}}x$ is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

