
If $a\le {{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x\le b$, then find the value of a and b.
A. $a=\dfrac{\pi }{4},b=\dfrac{3\pi }{4}$
B. $a=0,b=\dfrac{\pi }{2}$
C. $a=\dfrac{\pi }{2},b=\pi $
D. none of these
Answer
484.5k+ views
Hint: We try to find the identity for ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. From the domain of both ${{\sin }^{-1}}x$ and ${{\cos }^{-1}}x$, we try to find the maximum and minimum value of $g\left( x \right)={{\tan }^{-1}}x$. Putting the end values of $x=-1$ and $x=1$, we get the values of a and b.
Complete step-by-step answer:
We have the identity formula of ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ when $x\in \left[ -1,1 \right]$.
We also know the domain of both ${{\sin }^{-1}}x$ and ${{\cos }^{-1}}x$ is $\left[ -1,1 \right]$.
So, for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ to be defined we have to take the domain as $\left[ -1,1 \right]$.
Now ${{\tan }^{-1}}x$ is an increasing function as if $g\left( x \right)={{\tan }^{-1}}x$ and ${{g}^{'}}\left( x \right)=\dfrac{1}{1+{{x}^{2}}}>0$.
So, we can say at point $x=-1$, it has minimum value for $g\left( x \right)={{\tan }^{-1}}x$ and at point $x=1$, it has maximum value for $g\left( x \right)={{\tan }^{-1}}x$.
So, the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ depends on totally $g\left( x \right)={{\tan }^{-1}}x$. The main function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ attains minimum value at $x=-1$ and maximum value at point $x=1$.
So, we can say at point $x=-1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( -1 \right)={{\tan }^{-1}}\left( -1 \right)=\dfrac{-\pi }{4}$ and at point $x=1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( 1 \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}$.
Now we find the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$.
At point $x=-1$, the minimum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}-\dfrac{\pi }{4}=\dfrac{\pi }{4}$ and at point $x=1$, the maximum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}+\dfrac{\pi }{4}=\dfrac{3\pi }{4}$.
So, for $a\le {{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x\le b$, the value of a and b is $a=\dfrac{\pi }{4},b=\dfrac{3\pi }{4}$.
So, the correct answer is “Option A”.
Note: We can’t change the domain for the function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$. The $\left[ -1,1 \right]$ range is the key to find the maximum and minimum value. The principal value of $g\left( x \right)={{\tan }^{-1}}x$ is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$.
Complete step-by-step answer:
We have the identity formula of ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ when $x\in \left[ -1,1 \right]$.
We also know the domain of both ${{\sin }^{-1}}x$ and ${{\cos }^{-1}}x$ is $\left[ -1,1 \right]$.
So, for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ to be defined we have to take the domain as $\left[ -1,1 \right]$.
Now ${{\tan }^{-1}}x$ is an increasing function as if $g\left( x \right)={{\tan }^{-1}}x$ and ${{g}^{'}}\left( x \right)=\dfrac{1}{1+{{x}^{2}}}>0$.
So, we can say at point $x=-1$, it has minimum value for $g\left( x \right)={{\tan }^{-1}}x$ and at point $x=1$, it has maximum value for $g\left( x \right)={{\tan }^{-1}}x$.
So, the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ depends on totally $g\left( x \right)={{\tan }^{-1}}x$. The main function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ attains minimum value at $x=-1$ and maximum value at point $x=1$.
So, we can say at point $x=-1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( -1 \right)={{\tan }^{-1}}\left( -1 \right)=\dfrac{-\pi }{4}$ and at point $x=1$, the value for $g\left( x \right)={{\tan }^{-1}}x$ is $g\left( 1 \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}$.
Now we find the maximum and minimum value of $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$.
At point $x=-1$, the minimum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}-\dfrac{\pi }{4}=\dfrac{\pi }{4}$ and at point $x=1$, the maximum value for $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$ is $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}+\dfrac{\pi }{4}=\dfrac{3\pi }{4}$.
So, for $a\le {{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x\le b$, the value of a and b is $a=\dfrac{\pi }{4},b=\dfrac{3\pi }{4}$.
So, the correct answer is “Option A”.
Note: We can’t change the domain for the function $y\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x+{{\tan }^{-1}}x$. The $\left[ -1,1 \right]$ range is the key to find the maximum and minimum value. The principal value of $g\left( x \right)={{\tan }^{-1}}x$ is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
