
If $a=i-k$ , $b=xi+j+\left( 1-x \right)k$ and $c=yi+xj+\left( 1+x-y \right)k$. Then, $\left[ a\text{ }b\text{ }c \right]$ depends on?
1. Neither $x$ nor $y$ .
2. Both $x$ and $y$ .
3. Only $x$ .
4. Only $y$ .
Answer
508.5k+ views
Hint: In this problem we need to check whether the value of $\left[ a\text{ }b\text{ }c \right]$ depends on the variables $x$ and $y$ . For this we will first calculate the value of $\left[ a\text{ }b\text{ }c \right]$ by using the values of given vectors $a$ , $b$ and $c$. We will simplify the obtained determinant by performing column operations or the row operations. From the simplified value of $\left[ a\text{ }b\text{ }c \right]$ we can check whether the value is depending on the variables $x$ and $y$.
Complete step by step answer:
Given values of the vectors are $a=i-k$ , $b=xi+j+\left( 1-x \right)k$ and $c=yi+xj+\left( 1+x-y \right)k$.
Now the value of $\left[ a\text{ }b\text{ }c \right]$ can be written as
$\left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix}
1 & 0 & -1 \\
x & 1 & 1-x \\
y & x & 1+x-y \\
\end{matrix} \right|$
Perform the column operation ${{C}_{3}}\to {{C}_{3}}+{{C}_{1}}$ in the above determinant, then we will have
$\begin{align}
& \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix}
1 & 0 & 1-1 \\
x & 1 & 1-x+x \\
y & x & 1+x-y+y \\
\end{matrix} \right| \\
& \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix}
1 & 0 & 0 \\
x & 1 & 1 \\
y & x & 1+x \\
\end{matrix} \right| \\
\end{align}$
Now the above determinant can be simplified as
$\left[ a\text{ }b\text{ }c \right]=1\left| \begin{matrix}
1 & 1 \\
x & 1+x \\
\end{matrix} \right|$
Use the determinant formula $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=ad-bc$ in the above equation.
$\left[ a\text{ }b\text{ }c \right]=1\left[ 1\left( 1+x \right)-1\left( x \right) \right]$
Distribution law of multiplication says that $a\left( b+c \right)=ab+ac$ . Apply this formula in the above equation.
$\left[ a\text{ }b\text{ }c \right]=1\left[ 1+x-x \right]$
We know that the value of $x-x$ is equal to $0$ . Now the above equation is modified as
$\begin{align}
& \left[ a\text{ }b\text{ }c \right]=1\left( 1 \right) \\
& \Rightarrow \left[ a\text{ }b\text{ }c \right]=1 \\
\end{align}$
The value of $\left[ a\text{ }b\text{ }c \right]$ is equal to $1$ and there is no presence of any variable like $x$ and $y$ in the value of $\left[ a\text{ }b\text{ }c \right]$ which shows that the value $\left[ a\text{ }b\text{ }c \right]$ doesn’t depend on the variables $x$ and $y$ even though the vectors $a$ , $b$ and $c$ are expressed in terms of $x$ and $y$.
So, the correct answer is “Option 1”.
Note: In this problem while solving the determinant we have used the column operation to simplify the determinant. We can also perform the row operations to simplify the determinant or we can also directly calculate the determinant value by using the formula.
Complete step by step answer:
Given values of the vectors are $a=i-k$ , $b=xi+j+\left( 1-x \right)k$ and $c=yi+xj+\left( 1+x-y \right)k$.
Now the value of $\left[ a\text{ }b\text{ }c \right]$ can be written as
$\left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix}
1 & 0 & -1 \\
x & 1 & 1-x \\
y & x & 1+x-y \\
\end{matrix} \right|$
Perform the column operation ${{C}_{3}}\to {{C}_{3}}+{{C}_{1}}$ in the above determinant, then we will have
$\begin{align}
& \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix}
1 & 0 & 1-1 \\
x & 1 & 1-x+x \\
y & x & 1+x-y+y \\
\end{matrix} \right| \\
& \left[ a\text{ }b\text{ }c \right]=\left| \begin{matrix}
1 & 0 & 0 \\
x & 1 & 1 \\
y & x & 1+x \\
\end{matrix} \right| \\
\end{align}$
Now the above determinant can be simplified as
$\left[ a\text{ }b\text{ }c \right]=1\left| \begin{matrix}
1 & 1 \\
x & 1+x \\
\end{matrix} \right|$
Use the determinant formula $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=ad-bc$ in the above equation.
$\left[ a\text{ }b\text{ }c \right]=1\left[ 1\left( 1+x \right)-1\left( x \right) \right]$
Distribution law of multiplication says that $a\left( b+c \right)=ab+ac$ . Apply this formula in the above equation.
$\left[ a\text{ }b\text{ }c \right]=1\left[ 1+x-x \right]$
We know that the value of $x-x$ is equal to $0$ . Now the above equation is modified as
$\begin{align}
& \left[ a\text{ }b\text{ }c \right]=1\left( 1 \right) \\
& \Rightarrow \left[ a\text{ }b\text{ }c \right]=1 \\
\end{align}$
The value of $\left[ a\text{ }b\text{ }c \right]$ is equal to $1$ and there is no presence of any variable like $x$ and $y$ in the value of $\left[ a\text{ }b\text{ }c \right]$ which shows that the value $\left[ a\text{ }b\text{ }c \right]$ doesn’t depend on the variables $x$ and $y$ even though the vectors $a$ , $b$ and $c$ are expressed in terms of $x$ and $y$.
So, the correct answer is “Option 1”.
Note: In this problem while solving the determinant we have used the column operation to simplify the determinant. We can also perform the row operations to simplify the determinant or we can also directly calculate the determinant value by using the formula.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

