
If \[ABCDE\] is a regular pentagon, then the angle \[BDE\] is equal to:
A. \[90^\circ \]
B. $72^\circ $
C. $60^\circ $
D. $54^\circ $
Answer
564k+ views
Hint: In order to find the measure of the angle \[BDE\], first find the each angle of the regular pentagon and then use the isosceles property in the \[\Delta CDB\]. Find the angle \[CDB\] and hence solve it to get the required result.
Complete step-by-step solution:
According to the given question it is given that \[ABCDE\] is a regular pentagon.
The interior angle of the regular polygon is calculated by the formula as given below.
\[{\text{Angle}} = \dfrac{{\left( {n - 2} \right) \times 180^\circ }}{n}\]
Here, \[n\] is the number of sides for the regular polygon.
As the regular pentagon has a number of sides five with same length and five interior angles with the same measure.
So, the interior angle of the pentagon is calculated as given below.
\[{\text{Angle}} = \dfrac{{\left( {5 - 2} \right) \times 180^\circ }}{5}\]
Solve the right side of the above expression as given below.
\[{\text{Angle}} = \dfrac{{3 \times 180^\circ }}{5}\]
Solve the above expression by using multiplication and division rules as below.
So, each angle of the regular pentagon is \[108^\circ \].
In order to find the angle \[BDE\], first see the diagram as shown below.
Consider the \[\Delta CDB\].
As \[\angle CDB + \angle CBD + \angle BCD = 180^\circ \], and \[CD = BC\]
So, the triangle\[\Delta CDB\] is an isosceles triangle.
Hence, \[\angle CDB = \angle CBD\].
The sum of the interior angles of a triangle is \[180^\circ \].
\[
\Rightarrow \angle CDB + \angle CBD + \angle BCD = 180^\circ \\
\Rightarrow 2\angle CDB + \angle BCD = 180^\circ
\]
As, \[\angle BCD = 108^\circ \]
So, the angle \[CDB\] is calculated as:
\[
\Rightarrow 2\angle CDB = 180^\circ - 108^\circ \\
\Rightarrow 2\angle CDB = 72^\circ \\
\Rightarrow \angle CDB = 36^\circ
\]
Again, the angle \[CDE\] is expressed as the sum of the angles.
\[\angle CDE = \angle CDB + \angle BDE\]
The value for the angle \[BDE\] is calculated as:
\[
\Rightarrow \angle BDE = \angle CDE - \angle CDB \\
\Rightarrow \angle BDE = 108^\circ - 36^\circ \\
\Rightarrow \angle BDE = 72^\circ
\]
Therefore, from the above calculation it is concluded that the measure of the angle \[BDE\] is \[72^\circ \].
Hence, the correct option is (B).
Note: In the isosceles triangle the two angles opposite to the equal sides are congruent to each other. The number of sides is the same as the number of angles. The measure of angles of a regular polygon are the same.
Complete step-by-step solution:
According to the given question it is given that \[ABCDE\] is a regular pentagon.
The interior angle of the regular polygon is calculated by the formula as given below.
\[{\text{Angle}} = \dfrac{{\left( {n - 2} \right) \times 180^\circ }}{n}\]
Here, \[n\] is the number of sides for the regular polygon.
As the regular pentagon has a number of sides five with same length and five interior angles with the same measure.
So, the interior angle of the pentagon is calculated as given below.
\[{\text{Angle}} = \dfrac{{\left( {5 - 2} \right) \times 180^\circ }}{5}\]
Solve the right side of the above expression as given below.
\[{\text{Angle}} = \dfrac{{3 \times 180^\circ }}{5}\]
Solve the above expression by using multiplication and division rules as below.
So, each angle of the regular pentagon is \[108^\circ \].
In order to find the angle \[BDE\], first see the diagram as shown below.
Consider the \[\Delta CDB\].
As \[\angle CDB + \angle CBD + \angle BCD = 180^\circ \], and \[CD = BC\]
So, the triangle\[\Delta CDB\] is an isosceles triangle.
Hence, \[\angle CDB = \angle CBD\].
The sum of the interior angles of a triangle is \[180^\circ \].
\[
\Rightarrow \angle CDB + \angle CBD + \angle BCD = 180^\circ \\
\Rightarrow 2\angle CDB + \angle BCD = 180^\circ
\]
As, \[\angle BCD = 108^\circ \]
So, the angle \[CDB\] is calculated as:
\[
\Rightarrow 2\angle CDB = 180^\circ - 108^\circ \\
\Rightarrow 2\angle CDB = 72^\circ \\
\Rightarrow \angle CDB = 36^\circ
\]
Again, the angle \[CDE\] is expressed as the sum of the angles.
\[\angle CDE = \angle CDB + \angle BDE\]
The value for the angle \[BDE\] is calculated as:
\[
\Rightarrow \angle BDE = \angle CDE - \angle CDB \\
\Rightarrow \angle BDE = 108^\circ - 36^\circ \\
\Rightarrow \angle BDE = 72^\circ
\]
Therefore, from the above calculation it is concluded that the measure of the angle \[BDE\] is \[72^\circ \].
Hence, the correct option is (B).
Note: In the isosceles triangle the two angles opposite to the equal sides are congruent to each other. The number of sides is the same as the number of angles. The measure of angles of a regular polygon are the same.
Recently Updated Pages
Master Class 4 Science: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Give me the opposite gender of Duck class 8 english CBSE

Application to your principal for the character ce class 8 english CBSE

Full form of STD, ISD and PCO

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

