
If a,b,c,d are complex numbers ,then the value of the determinant \[\Delta = \left| {\begin{array}{*{20}{c}}
2&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{2abcd}
\end{array}} \right|\]equals
A) 0
B) \[abcd\]
C) \[a + b + c + d\]
D) \[2abcd\]
Answer
597.6k+ views
Hint: We can split the determinant into two determinants where we can write the elements of the determinant as a sum of two determinants.
\[\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1} + {a_2}}&{{a_3} + {a_4}}&{{a_5} + {a_6}} \\
{{b_1} + {b_2}}&{{b_3} + {b_4}}&{{b_5} + {b_6}} \\
{{c_1} + {c_2}}&{{c_3} + {c_4}}&{{c_5} + {c_6}}
\end{array}} \right|\]
Now we can split the above determinant as follows,
\[\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_3}}&{{a_5}} \\
{{b_1}}&{{b_3}}&{{b_5}} \\
{{c_1}}&{{c_3}}&{{c_5}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{{a_2}}&{{a_4}}&{{a_6}} \\
{{b_2}}&{{b_4}}&{{b_6}} \\
{{c_2}}&{{c_4}}&{{c_6}}
\end{array}} \right|\]
And let,
\[\Delta = {\Delta _1} + {\Delta _2}\]
Where \[{\Delta _1} = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_3}}&{{a_5}} \\
{{b_1}}&{{b_3}}&{{b_5}} \\
{{c_1}}&{{c_3}}&{{c_5}}
\end{array}} \right|\]and\[{\Delta _2} = \left| {\begin{array}{*{20}{c}}
{{a_2}}&{{a_4}}&{{a_6}} \\
{{b_2}}&{{b_4}}&{{b_6}} \\
{{c_2}}&{{c_4}}&{{c_6}}
\end{array}} \right|\]
Complete step by step answer:
It is given in the question that,
\[\Delta = \left| {\begin{array}{*{20}{c}}
2&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{2abcd}
\end{array}} \right|\]
Let us rewrite the elements of the equation as follows,
\[\Delta = \left| {\begin{array}{*{20}{c}}
{1 + 1}&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{(a + b)(c + d) + (a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{abcd + abcd}
\end{array}} \right|\]
Now let us split the determinant into sum of two determinants,
\[\Delta = \left| {\begin{array}{*{20}{c}}
1&{c + d}&{cd} \\
{a + b}&{(a + b)(c + d)}&{cd(a + b)} \\
{ab}&{ab(c + d)}&{abcd}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
1&{a + b}&{ab} \\
{c + d}&{(a + b)(c + d)}&{ab(c + d)} \\
{cd}&{cd(a + b)}&{abcd}
\end{array}} \right|\]
Now let us take the common element in each of the above two determinants, then we get,
\[\Delta = (c + d).cd\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{a + b}&{(a + b)}&{(a + b)} \\
{ab}&{ab}&{ab}
\end{array}} \right| + (a + b).ab\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{c + d}&{(c + d)}&{(c + d)} \\
{cd}&{cd}&{cd}
\end{array}} \right|\]
From the first determinant we have taken (c+d) in common from the second column and cd from the third column,
Similarly we have taken (a+b) in common from the second column and ab from the third column of the second determinant.
Let us apply the following operations in both the determinants mentioned above,
\[{C_2}' = {C_2} - {C_1}\] and \[{C_3}' = {C_3} - {C_1}\] where \[{C_1}\]is the first column, \[{C_2}\]is the second column, and \[{C_3}\]is the third column.
By applying the above process we get,
\[\Delta = (c + d).cd\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{a + b}&0&0 \\
{ab}&0&0
\end{array}} \right| + (a + b).ab\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{c + d}&0&0 \\
{cd}&0&0
\end{array}} \right|\]
On finding the determinant value we get,
\[\Delta = (c + d).cd \times 0 + (a + b).ab \times 0\]
On further simplification we arrive at the value of the determinant,
\[\Delta = 0 + 0 = 0\]
Hence we have found the value of determinant as zero,
Hence the determinant \[\Delta = \left| {\begin{array}{*{20}{c}}
2&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{2abcd}
\end{array}} \right|\]equals 0.
So, Option (A) is the correct answer.
Note:
Additional information: If each row of any column of a determinant is a multiple of the same constant then we can take it outside the determinant taking common from each row.
\[
\vartriangle = \left| {\begin{array}{*{20}{c}}
{c{a_1}}&{{a_2}}&{{a_3}} \\
{c{b_1}}&{{b_2}}&{{b_3}} \\
{c{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
= c\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
\]
By the property of determinant we have whenever two columns of a determinant are 0 then, the value of the determinant is 0.
\[\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1} + {a_2}}&{{a_3} + {a_4}}&{{a_5} + {a_6}} \\
{{b_1} + {b_2}}&{{b_3} + {b_4}}&{{b_5} + {b_6}} \\
{{c_1} + {c_2}}&{{c_3} + {c_4}}&{{c_5} + {c_6}}
\end{array}} \right|\]
Now we can split the above determinant as follows,
\[\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_3}}&{{a_5}} \\
{{b_1}}&{{b_3}}&{{b_5}} \\
{{c_1}}&{{c_3}}&{{c_5}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{{a_2}}&{{a_4}}&{{a_6}} \\
{{b_2}}&{{b_4}}&{{b_6}} \\
{{c_2}}&{{c_4}}&{{c_6}}
\end{array}} \right|\]
And let,
\[\Delta = {\Delta _1} + {\Delta _2}\]
Where \[{\Delta _1} = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_3}}&{{a_5}} \\
{{b_1}}&{{b_3}}&{{b_5}} \\
{{c_1}}&{{c_3}}&{{c_5}}
\end{array}} \right|\]and\[{\Delta _2} = \left| {\begin{array}{*{20}{c}}
{{a_2}}&{{a_4}}&{{a_6}} \\
{{b_2}}&{{b_4}}&{{b_6}} \\
{{c_2}}&{{c_4}}&{{c_6}}
\end{array}} \right|\]
Complete step by step answer:
It is given in the question that,
\[\Delta = \left| {\begin{array}{*{20}{c}}
2&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{2abcd}
\end{array}} \right|\]
Let us rewrite the elements of the equation as follows,
\[\Delta = \left| {\begin{array}{*{20}{c}}
{1 + 1}&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{(a + b)(c + d) + (a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{abcd + abcd}
\end{array}} \right|\]
Now let us split the determinant into sum of two determinants,
\[\Delta = \left| {\begin{array}{*{20}{c}}
1&{c + d}&{cd} \\
{a + b}&{(a + b)(c + d)}&{cd(a + b)} \\
{ab}&{ab(c + d)}&{abcd}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
1&{a + b}&{ab} \\
{c + d}&{(a + b)(c + d)}&{ab(c + d)} \\
{cd}&{cd(a + b)}&{abcd}
\end{array}} \right|\]
Now let us take the common element in each of the above two determinants, then we get,
\[\Delta = (c + d).cd\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{a + b}&{(a + b)}&{(a + b)} \\
{ab}&{ab}&{ab}
\end{array}} \right| + (a + b).ab\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{c + d}&{(c + d)}&{(c + d)} \\
{cd}&{cd}&{cd}
\end{array}} \right|\]
From the first determinant we have taken (c+d) in common from the second column and cd from the third column,
Similarly we have taken (a+b) in common from the second column and ab from the third column of the second determinant.
Let us apply the following operations in both the determinants mentioned above,
\[{C_2}' = {C_2} - {C_1}\] and \[{C_3}' = {C_3} - {C_1}\] where \[{C_1}\]is the first column, \[{C_2}\]is the second column, and \[{C_3}\]is the third column.
By applying the above process we get,
\[\Delta = (c + d).cd\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{a + b}&0&0 \\
{ab}&0&0
\end{array}} \right| + (a + b).ab\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{c + d}&0&0 \\
{cd}&0&0
\end{array}} \right|\]
On finding the determinant value we get,
\[\Delta = (c + d).cd \times 0 + (a + b).ab \times 0\]
On further simplification we arrive at the value of the determinant,
\[\Delta = 0 + 0 = 0\]
Hence we have found the value of determinant as zero,
Hence the determinant \[\Delta = \left| {\begin{array}{*{20}{c}}
2&{a + b + c + d}&{ab + cd} \\
{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)} \\
{ab + cd}&{ab(c + d) + cd(a + b)}&{2abcd}
\end{array}} \right|\]equals 0.
So, Option (A) is the correct answer.
Note:
Additional information: If each row of any column of a determinant is a multiple of the same constant then we can take it outside the determinant taking common from each row.
\[
\vartriangle = \left| {\begin{array}{*{20}{c}}
{c{a_1}}&{{a_2}}&{{a_3}} \\
{c{b_1}}&{{b_2}}&{{b_3}} \\
{c{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
= c\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
\]
By the property of determinant we have whenever two columns of a determinant are 0 then, the value of the determinant is 0.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

