
If $a,b,c$ denotes the lengths of the sides of a triangle opposite to angles $A,B,C$ respectively in $\Delta ABC$, then the correct relation among $a,b,c,A,B,C$ is given by which of the following option?
A) $(b + c)\sin (\dfrac{{B + C}}{2}) = a\cos \dfrac{A}{2}$
B) $(b - c)\cos \dfrac{A}{2} = a\sin (\dfrac{{B - C}}{2})$
C) $(b - c)\cos \dfrac{A}{2} = 2a\sin (\dfrac{{B - C}}{2})$
D) $(b - c)\sin (\dfrac{{B - C}}{2}) = a\cos \dfrac{A}{2}$
Answer
587.7k+ views
Hint:There is a trigonometric relation between sides and angles of a triangle. Using this relation and necessary trigonometric formulas, we can find the answer. Keep in mind angle sum of a triangle is $180^\circ $
Formula used:If $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$, then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
For every angle $\theta $, we have,
$\cos (90 - \theta ) = \sin \theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Sum of the angles in a triangle is $180^\circ $.
Complete step-by-step answer:
Given $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$,
then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
$ \Rightarrow a = k\sin A,b = k\sin B,c = k\sin C$
Consider $\dfrac{{b - c}}{a}$
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{k\sin B - k\sin C}}{{k\sin A}} = \dfrac{{k(\sin B - \sin A)}}{{k\sin A}}$
Cancelling $k$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}}$
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Also, for every angle $\theta $, we have,
$\sin 2\theta = 2\sin \theta \cos \theta $
Using these relations, we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}} = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $2$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}} - - - (i)$
Now consider $\vartriangle ABC$. Here $A,B,C$ are the three angles.
$ \Rightarrow A + B + C = 180$
Rearranging the terms, we get,
$ \Rightarrow B + C = 180 - A$
Dividing both sides by $2$ we have,
$ \Rightarrow \dfrac{{B + C}}{2} = \dfrac{{180 - A}}{2} = 90 - \dfrac{A}{2}$
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \cos (90 - \dfrac{A}{2})$
But $\cos (90 - \theta ) = \sin \theta $
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \sin \dfrac{A}{2}$
Substituting this in $(i)$ we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $\sin \dfrac{A}{2}$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}$
Cross multiplying, we get,
$ \Rightarrow (b - c)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}$
So, the correct answer is “Option B”.
Note:Here we considered $\dfrac{{b - c}}{a}$ by looking into the options. Since there is no further clue from the question it is advisable to check the options and thus solve the answer. Further simplification should be done accordingly to reach the answer.AND remember important trigonometric formulas and identities for solving these types of problems.
Formula used:If $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$, then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
For every angle $\theta $, we have,
$\cos (90 - \theta ) = \sin \theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Sum of the angles in a triangle is $180^\circ $.
Complete step-by-step answer:
Given $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$,
then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
$ \Rightarrow a = k\sin A,b = k\sin B,c = k\sin C$
Consider $\dfrac{{b - c}}{a}$
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{k\sin B - k\sin C}}{{k\sin A}} = \dfrac{{k(\sin B - \sin A)}}{{k\sin A}}$
Cancelling $k$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}}$
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Also, for every angle $\theta $, we have,
$\sin 2\theta = 2\sin \theta \cos \theta $
Using these relations, we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}} = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $2$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}} - - - (i)$
Now consider $\vartriangle ABC$. Here $A,B,C$ are the three angles.
$ \Rightarrow A + B + C = 180$
Rearranging the terms, we get,
$ \Rightarrow B + C = 180 - A$
Dividing both sides by $2$ we have,
$ \Rightarrow \dfrac{{B + C}}{2} = \dfrac{{180 - A}}{2} = 90 - \dfrac{A}{2}$
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \cos (90 - \dfrac{A}{2})$
But $\cos (90 - \theta ) = \sin \theta $
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \sin \dfrac{A}{2}$
Substituting this in $(i)$ we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $\sin \dfrac{A}{2}$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}$
Cross multiplying, we get,
$ \Rightarrow (b - c)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}$
So, the correct answer is “Option B”.
Note:Here we considered $\dfrac{{b - c}}{a}$ by looking into the options. Since there is no further clue from the question it is advisable to check the options and thus solve the answer. Further simplification should be done accordingly to reach the answer.AND remember important trigonometric formulas and identities for solving these types of problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

