
If $a,b,c$ denotes the lengths of the sides of a triangle opposite to angles $A,B,C$ respectively in $\Delta ABC$, then the correct relation among $a,b,c,A,B,C$ is given by which of the following option?
A) $(b + c)\sin (\dfrac{{B + C}}{2}) = a\cos \dfrac{A}{2}$
B) $(b - c)\cos \dfrac{A}{2} = a\sin (\dfrac{{B - C}}{2})$
C) $(b - c)\cos \dfrac{A}{2} = 2a\sin (\dfrac{{B - C}}{2})$
D) $(b - c)\sin (\dfrac{{B - C}}{2}) = a\cos \dfrac{A}{2}$
Answer
507.6k+ views
Hint:There is a trigonometric relation between sides and angles of a triangle. Using this relation and necessary trigonometric formulas, we can find the answer. Keep in mind angle sum of a triangle is $180^\circ $
Formula used:If $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$, then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
For every angle $\theta $, we have,
$\cos (90 - \theta ) = \sin \theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Sum of the angles in a triangle is $180^\circ $.
Complete step-by-step answer:
Given $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$,
then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
$ \Rightarrow a = k\sin A,b = k\sin B,c = k\sin C$
Consider $\dfrac{{b - c}}{a}$
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{k\sin B - k\sin C}}{{k\sin A}} = \dfrac{{k(\sin B - \sin A)}}{{k\sin A}}$
Cancelling $k$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}}$
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Also, for every angle $\theta $, we have,
$\sin 2\theta = 2\sin \theta \cos \theta $
Using these relations, we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}} = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $2$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}} - - - (i)$
Now consider $\vartriangle ABC$. Here $A,B,C$ are the three angles.
$ \Rightarrow A + B + C = 180$
Rearranging the terms, we get,
$ \Rightarrow B + C = 180 - A$
Dividing both sides by $2$ we have,
$ \Rightarrow \dfrac{{B + C}}{2} = \dfrac{{180 - A}}{2} = 90 - \dfrac{A}{2}$
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \cos (90 - \dfrac{A}{2})$
But $\cos (90 - \theta ) = \sin \theta $
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \sin \dfrac{A}{2}$
Substituting this in $(i)$ we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $\sin \dfrac{A}{2}$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}$
Cross multiplying, we get,
$ \Rightarrow (b - c)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}$
So, the correct answer is “Option B”.
Note:Here we considered $\dfrac{{b - c}}{a}$ by looking into the options. Since there is no further clue from the question it is advisable to check the options and thus solve the answer. Further simplification should be done accordingly to reach the answer.AND remember important trigonometric formulas and identities for solving these types of problems.
Formula used:If $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$, then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
For every angle $\theta $, we have,
$\cos (90 - \theta ) = \sin \theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Sum of the angles in a triangle is $180^\circ $.
Complete step-by-step answer:

Given $a,b,c$ denotes the sides of a triangle opposite to angles $A,B,C$ in $\Delta ABC$,
then we have,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k$, for some value $k$.
$ \Rightarrow a = k\sin A,b = k\sin B,c = k\sin C$
Consider $\dfrac{{b - c}}{a}$
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{k\sin B - k\sin C}}{{k\sin A}} = \dfrac{{k(\sin B - \sin A)}}{{k\sin A}}$
Cancelling $k$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}}$
For every $x,y$ ,
$\sin x - \sin y = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}$
Also, for every angle $\theta $, we have,
$\sin 2\theta = 2\sin \theta \cos \theta $
Using these relations, we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin B - \sin C}}{{\sin A}} = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $2$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}} - - - (i)$
Now consider $\vartriangle ABC$. Here $A,B,C$ are the three angles.
$ \Rightarrow A + B + C = 180$
Rearranging the terms, we get,
$ \Rightarrow B + C = 180 - A$
Dividing both sides by $2$ we have,
$ \Rightarrow \dfrac{{B + C}}{2} = \dfrac{{180 - A}}{2} = 90 - \dfrac{A}{2}$
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \cos (90 - \dfrac{A}{2})$
But $\cos (90 - \theta ) = \sin \theta $
$ \Rightarrow \cos (\dfrac{{B + C}}{2}) = \sin \dfrac{A}{2}$
Substituting this in $(i)$ we get,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}$
Cancelling $\sin \dfrac{A}{2}$ from numerator and denominator we have,
$ \Rightarrow \dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}$
Cross multiplying, we get,
$ \Rightarrow (b - c)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}$
So, the correct answer is “Option B”.
Note:Here we considered $\dfrac{{b - c}}{a}$ by looking into the options. Since there is no further clue from the question it is advisable to check the options and thus solve the answer. Further simplification should be done accordingly to reach the answer.AND remember important trigonometric formulas and identities for solving these types of problems.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
