
If ${{a}_{1}},{{a}_{2}},...,{{a}_{n}},{{a}_{n+1}},...$ are in G.P. and ${{a}_{i}}>0\text{ }\forall i$ then $\left| \begin{matrix}
\log {{a}_{n}} & \log {{a}_{n+2}} & \log {{a}_{n+4}} \\
\log {{a}_{n+6}} & \log {{a}_{n+8}} & \log {{a}_{n+10}} \\
\log {{a}_{n+12}} & \log {{a}_{n+14}} & \log {{a}_{n+16}} \\
\end{matrix} \right|$ is equal to
(a) $0$
(b) $n\log {{a}_{n}}$
(c) $n\left( n+1 \right)\log {{a}_{n}}$
(d) none of these
Answer
531.9k+ views
Hint: We should use the general form of nth term of a G.P. and substitute each term in that form. We can then simplify the determinant by using the logarithmic identity $\log {{a}^{m}}=m\log a$. We then need to use basic arithmetic operations on the determinant to find its value.
Complete step by step answer:
We have the following determinant,
Det = $\left| \begin{matrix}
\log {{a}_{n}} & \log {{a}_{n+2}} & \log {{a}_{n+4}} \\
\log {{a}_{n+6}} & \log {{a}_{n+8}} & \log {{a}_{n+10}} \\
\log {{a}_{n+12}} & \log {{a}_{n+14}} & \log {{a}_{n+16}} \\
\end{matrix} \right|$
Let us try to evaluate the following determinant.
Let a be the first term, and r be the common difference of the geometric progression.
Then the nth term of this G.P. is $a{{r}^{n-1}}$ .
We can now replace the value of each term in the determinant.
Det = $\left| \begin{matrix}
\log a{{r}^{n-1}} & \log a{{r}^{n+1}} & \log a{{r}^{n+3}} \\
\log a{{r}^{n+5}} & \log a{{r}^{n+7}} & \log a{{r}^{n+9}} \\
\log a{{r}^{n+11}} & \log a{{r}^{n+13}} & \log a{{r}^{n+15}} \\
\end{matrix} \right|$
We can simplify this determinant as
Det = $\left| \begin{matrix}
\log {{r}^{n-1}} & \log {{r}^{n+1}} & \log {{r}^{n+3}} \\
\log {{r}^{n+5}} & \log {{r}^{n+7}} & \log {{r}^{n+9}} \\
\log {{r}^{n+11}} & \log {{r}^{n+13}} & \log {{r}^{n+15}} \\
\end{matrix} \right|$
We know that property of logarithms that $\log {{a}^{m}}=m\log a$, so by using this property we can express the determinant as
Det = \[\left| \begin{matrix}
\left( n-1 \right)\log r & \left( n+1 \right)\log r & \left( n+3 \right)\log r \\
\left( n+5 \right)\log r & \left( n+7 \right)\log r & \left( n+9 \right)\log r \\
\left( n+11 \right)\log r & \left( n+13 \right)\log r & \left( n+15 \right)\log r \\
\end{matrix} \right|\]
We can now take the term $\log r$ as common from each column. Hence, we get
Det = \[{{\left( \log r \right)}^{3}}\left| \begin{matrix}
\left( n-1 \right) & \left( n+1 \right) & \left( n+3 \right) \\
\left( n+5 \right) & \left( n+7 \right) & \left( n+9 \right) \\
\left( n+11 \right) & \left( n+13 \right) & \left( n+15 \right) \\
\end{matrix} \right|\]
We know that we can perform arithmetic operations on rows or columns, without affecting the value of the determinant.
To simplify this determinant, let us perform the following operation ${{C}_{3}}={{C}_{3}}-{{C}_{2}}$.
We now get
Det = \[{{\left( \log r \right)}^{3}}\left| \begin{matrix}
\left( n-1 \right) & \left( n+1 \right) & 2 \\
\left( n+5 \right) & \left( n+7 \right) & 2 \\
\left( n+11 \right) & \left( n+13 \right) & 2 \\
\end{matrix} \right|\]
Let us now perform the operation ${{C}_{2}}={{C}_{2}}-{{C}_{1}}$.
We will get the following determinant,
Det = \[{{\left( \log r \right)}^{3}}\left| \begin{matrix}
\left( n-1 \right) & 2 & 2 \\
\left( n+5 \right) & 2 & 2 \\
\left( n+11 \right) & 2 & 2 \\
\end{matrix} \right|\]
We know by the property of determinants that if the values in two determinants are exactly the same, then the value of the determinant is zero.
Hence, we have
\[\left| \begin{matrix}
\left( n-1 \right) & 2 & 2 \\
\left( n+5 \right) & 2 & 2 \\
\left( n+11 \right) & 2 & 2 \\
\end{matrix} \right|=0\]
Thus, we get
Det = ${{\left( \log r \right)}^{3}}\times 0$
And so, the value of this determinant is
Det = 0.
So, the correct answer is “Option a”.
Note: This determinant involves complex terms. So, we must be careful while handling these terms. We can also solve this problem by using the fact that if a, b, c are in G.P. then the terms log a, log b, log c will be in arithmetic progression (A.P.)
Complete step by step answer:
We have the following determinant,
Det = $\left| \begin{matrix}
\log {{a}_{n}} & \log {{a}_{n+2}} & \log {{a}_{n+4}} \\
\log {{a}_{n+6}} & \log {{a}_{n+8}} & \log {{a}_{n+10}} \\
\log {{a}_{n+12}} & \log {{a}_{n+14}} & \log {{a}_{n+16}} \\
\end{matrix} \right|$
Let us try to evaluate the following determinant.
Let a be the first term, and r be the common difference of the geometric progression.
Then the nth term of this G.P. is $a{{r}^{n-1}}$ .
We can now replace the value of each term in the determinant.
Det = $\left| \begin{matrix}
\log a{{r}^{n-1}} & \log a{{r}^{n+1}} & \log a{{r}^{n+3}} \\
\log a{{r}^{n+5}} & \log a{{r}^{n+7}} & \log a{{r}^{n+9}} \\
\log a{{r}^{n+11}} & \log a{{r}^{n+13}} & \log a{{r}^{n+15}} \\
\end{matrix} \right|$
We can simplify this determinant as
Det = $\left| \begin{matrix}
\log {{r}^{n-1}} & \log {{r}^{n+1}} & \log {{r}^{n+3}} \\
\log {{r}^{n+5}} & \log {{r}^{n+7}} & \log {{r}^{n+9}} \\
\log {{r}^{n+11}} & \log {{r}^{n+13}} & \log {{r}^{n+15}} \\
\end{matrix} \right|$
We know that property of logarithms that $\log {{a}^{m}}=m\log a$, so by using this property we can express the determinant as
Det = \[\left| \begin{matrix}
\left( n-1 \right)\log r & \left( n+1 \right)\log r & \left( n+3 \right)\log r \\
\left( n+5 \right)\log r & \left( n+7 \right)\log r & \left( n+9 \right)\log r \\
\left( n+11 \right)\log r & \left( n+13 \right)\log r & \left( n+15 \right)\log r \\
\end{matrix} \right|\]
We can now take the term $\log r$ as common from each column. Hence, we get
Det = \[{{\left( \log r \right)}^{3}}\left| \begin{matrix}
\left( n-1 \right) & \left( n+1 \right) & \left( n+3 \right) \\
\left( n+5 \right) & \left( n+7 \right) & \left( n+9 \right) \\
\left( n+11 \right) & \left( n+13 \right) & \left( n+15 \right) \\
\end{matrix} \right|\]
We know that we can perform arithmetic operations on rows or columns, without affecting the value of the determinant.
To simplify this determinant, let us perform the following operation ${{C}_{3}}={{C}_{3}}-{{C}_{2}}$.
We now get
Det = \[{{\left( \log r \right)}^{3}}\left| \begin{matrix}
\left( n-1 \right) & \left( n+1 \right) & 2 \\
\left( n+5 \right) & \left( n+7 \right) & 2 \\
\left( n+11 \right) & \left( n+13 \right) & 2 \\
\end{matrix} \right|\]
Let us now perform the operation ${{C}_{2}}={{C}_{2}}-{{C}_{1}}$.
We will get the following determinant,
Det = \[{{\left( \log r \right)}^{3}}\left| \begin{matrix}
\left( n-1 \right) & 2 & 2 \\
\left( n+5 \right) & 2 & 2 \\
\left( n+11 \right) & 2 & 2 \\
\end{matrix} \right|\]
We know by the property of determinants that if the values in two determinants are exactly the same, then the value of the determinant is zero.
Hence, we have
\[\left| \begin{matrix}
\left( n-1 \right) & 2 & 2 \\
\left( n+5 \right) & 2 & 2 \\
\left( n+11 \right) & 2 & 2 \\
\end{matrix} \right|=0\]
Thus, we get
Det = ${{\left( \log r \right)}^{3}}\times 0$
And so, the value of this determinant is
Det = 0.
So, the correct answer is “Option a”.
Note: This determinant involves complex terms. So, we must be careful while handling these terms. We can also solve this problem by using the fact that if a, b, c are in G.P. then the terms log a, log b, log c will be in arithmetic progression (A.P.)
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

