
If ${{a}_{0}}$ is the Bohr radius, then the radius $n=2$ in triply ionized beryllium will be,
$\begin{align}
& A.4{{a}_{0}} \\
& B.{{a}_{0}} \\
& C.\dfrac{{{a}_{0}}}{4} \\
& D.2{{a}_{0}} \\
\end{align}$
Answer
563.7k+ views
Hint: The radius of the hydrogen equivalent system can be found by taking the ratio of the product of the square of the number of shells present and the radius of Bohr orbit to the atomic number of the atom. Here it is mentioned that the atom is a triply ionised beryllium. Triply ionised beryllium is having the number of electrons as one and atomic number as four. Substitute all this in the equation for the radius of the atom. This will help you in answering this question.
Complete step by step answer:
The radius of an hydrogen equivalent system which is having an atomic number mentioned as $Z$, is given to be as ${{r}_{n}}$. This can be written as,
${{r}_{n}}=\dfrac{{{n}^{2}}{{a}_{0}}}{Z}$
Where ${{a}_{0}}$be the radius of the Bohr orbit.
Here it is mentioned that the atom is a triply ionised beryllium. Triply ionised beryllium is having the number of electrons as one. The atomic number can be written as,
$Z=4$
And the number of orbit has been mentioned as,
$n=2$
Let us substitute this in the above cited equation. This can be written as,
\[{{r}_{n}}=\dfrac{{{2}^{2}}\times {{a}_{0}}}{4}={{a}_{0}}\]
Therefore the radius of the orbit has been calculated.
This has been given as option B.
Note:
The Bohr radius is basically defined as a physical constant. T will be equivalent to the most probable distance between the nucleus of an atom and the first orbital of the hydrogen where the electron revolves. It is referred to as the ground state of an atom which is non-relativistic and also with an infinitely heavy proton. It is named after the renowned scientist Neils Bohr. He explained the Bohr model of an atom.
Complete step by step answer:
The radius of an hydrogen equivalent system which is having an atomic number mentioned as $Z$, is given to be as ${{r}_{n}}$. This can be written as,
${{r}_{n}}=\dfrac{{{n}^{2}}{{a}_{0}}}{Z}$
Where ${{a}_{0}}$be the radius of the Bohr orbit.
Here it is mentioned that the atom is a triply ionised beryllium. Triply ionised beryllium is having the number of electrons as one. The atomic number can be written as,
$Z=4$
And the number of orbit has been mentioned as,
$n=2$
Let us substitute this in the above cited equation. This can be written as,
\[{{r}_{n}}=\dfrac{{{2}^{2}}\times {{a}_{0}}}{4}={{a}_{0}}\]
Therefore the radius of the orbit has been calculated.
This has been given as option B.
Note:
The Bohr radius is basically defined as a physical constant. T will be equivalent to the most probable distance between the nucleus of an atom and the first orbital of the hydrogen where the electron revolves. It is referred to as the ground state of an atom which is non-relativistic and also with an infinitely heavy proton. It is named after the renowned scientist Neils Bohr. He explained the Bohr model of an atom.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

