
If a vector $\vec p$ making angles $\alpha ,\beta ,{\text{ and }}\lambda $ respectively with the X, Y and Z axis respectively, then the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\lambda $ =
$\left( a \right)$ 0
$\left( b \right)$ 1
$\left( c \right)$ 2
$\left( d \right)$ 3
Answer
579.9k+ views
Hint: In this particular type of question use the property that the dot product of any vector with the unit vector is equal to the product of modulus of vectors and multiply by the cosine of angle in which the unit vector has so use these concepts to reach the solution of the question.
Complete step by step answer:
Consider a line LL’ which makes an angle $\alpha ,\beta ,\lambda $ with the x, y and z axis respectively.
Now consider a vector, $\vec p$ be any non-zero vector along the line LL’
Let, $\vec p = {p_1}\hat i + {p_2}\hat j + {p_3}\hat k$.................. (1)
Now since $\hat i$ is a unit vector along the x-axis.
Therefore,
$\vec p.\hat i = \left| {\vec p} \right|.\left| {\hat i} \right|\cos \alpha $....................... (2)
Now from equation (1)
$ \Rightarrow \left| {\vec p} \right| = \sqrt {p_1^2 + p_2^2 + p_3^2} $
And
$\left| {\hat i} \right| = 1$
Now from equation (2) we have,
$ \Rightarrow \left( {{p_1}\hat i + {p_2}\hat j + {p_3}\hat k} \right).\hat i = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $
$ \Rightarrow \left( {{p_1} + 0 + 0} \right) = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $, $\left[ {\because \hat i.\hat i = 1,\hat i.\hat j = 0,\hat i.\hat k = 0} \right]$
\[ \Rightarrow \cos \alpha = \dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]..................... (3)
Similarly,
\[ \Rightarrow \cos \beta = \dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]................. (4)
\[ \Rightarrow \cos \lambda = \dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\].................. (5)
Now squaring and adding equations (3), (4), and (5) we have,
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = {\left( {\dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2}$
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = \left( {\dfrac{{p_1^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_2^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right)$
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = \left( {\dfrac{{p_1^2 + p_2^2 + p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) = 1$
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = 1$
Now as we know that, ${\sin ^2}x + {\cos ^2}x = 1$
Therefore, ${\cos ^2}x = 1 - {\sin ^2}x$ so use this property in the above equation we have,
$ \Rightarrow 1 - {\sin ^2}\alpha + 1 - {\sin ^2}\beta + 1 - {\sin ^2}\lambda = 1$
$ \Rightarrow {\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\lambda = 3 - 1 = 2$
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the values of the standard trigonometric identities which is stated above, then simply substitute the values in equation and simplify as above we will get the required value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\lambda $.
Complete step by step answer:
Consider a line LL’ which makes an angle $\alpha ,\beta ,\lambda $ with the x, y and z axis respectively.
Now consider a vector, $\vec p$ be any non-zero vector along the line LL’
Let, $\vec p = {p_1}\hat i + {p_2}\hat j + {p_3}\hat k$.................. (1)
Now since $\hat i$ is a unit vector along the x-axis.
Therefore,
$\vec p.\hat i = \left| {\vec p} \right|.\left| {\hat i} \right|\cos \alpha $....................... (2)
Now from equation (1)
$ \Rightarrow \left| {\vec p} \right| = \sqrt {p_1^2 + p_2^2 + p_3^2} $
And
$\left| {\hat i} \right| = 1$
Now from equation (2) we have,
$ \Rightarrow \left( {{p_1}\hat i + {p_2}\hat j + {p_3}\hat k} \right).\hat i = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $
$ \Rightarrow \left( {{p_1} + 0 + 0} \right) = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $, $\left[ {\because \hat i.\hat i = 1,\hat i.\hat j = 0,\hat i.\hat k = 0} \right]$
\[ \Rightarrow \cos \alpha = \dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]..................... (3)
Similarly,
\[ \Rightarrow \cos \beta = \dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]................. (4)
\[ \Rightarrow \cos \lambda = \dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\].................. (5)
Now squaring and adding equations (3), (4), and (5) we have,
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = {\left( {\dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2}$
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = \left( {\dfrac{{p_1^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_2^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right)$
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = \left( {\dfrac{{p_1^2 + p_2^2 + p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) = 1$
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\lambda = 1$
Now as we know that, ${\sin ^2}x + {\cos ^2}x = 1$
Therefore, ${\cos ^2}x = 1 - {\sin ^2}x$ so use this property in the above equation we have,
$ \Rightarrow 1 - {\sin ^2}\alpha + 1 - {\sin ^2}\beta + 1 - {\sin ^2}\lambda = 1$
$ \Rightarrow {\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\lambda = 3 - 1 = 2$
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the values of the standard trigonometric identities which is stated above, then simply substitute the values in equation and simplify as above we will get the required value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\lambda $.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

