
If a vector $\overrightarrow P $ making angles $\alpha,\beta $ and $\gamma $ respectively with the X, Y, and Z axes respectively.
Then ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma = $
A. 0
B. 1
C. 2
D. 3
Answer
595.2k+ views
Hint: Let the given vector $\overrightarrow P $ be \[{P_1}\hat i + {P_2}\hat j + {P_3}\hat k\]. Find the relations for the $\cos \alpha ,\cos \beta $ and $\cos \gamma $ by finding the dot product of the vector $\overrightarrow P $ with the X,Y and Z axes respectively. Use the values of $\cos \alpha ,\cos \beta $ and $\cos \gamma $ to find the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $
Complete step by step solution:
Let us assume the three dimensional $\overrightarrow P $ be \[{P_1}\hat i + {P_2}\hat j + {P_3}\hat k\]. Then the magnitude of the vector $\overrightarrow P $ will be
$\left| P \right| = \sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} $
It is known that if the angle between two vectors, $\overrightarrow A $ and $\overrightarrow B $ is $\theta $, then the given relation is valid.
$\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}$.
As we are given in the question, the angle between the vector $\overrightarrow P $ and $x$ axis is $\alpha $.
The unit vector in the direction of the $x$ axis is given by $\hat i$. The magnitude of the unit vector is 1.
Substituting the value $\alpha $ for $\theta $, value $\overrightarrow P $ for $\overrightarrow A $ and value $\hat i$ for $\overrightarrow B $ in the relation $\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}$, we get
$\cos \alpha = \dfrac{{\overrightarrow P .\hat i}}{{\left| P \right|\left| {\hat i} \right|}}$
Substituting the value \[{P_1}\hat i + {P_2}\hat j + {P_3}\hat k\] for $\overrightarrow P $, the value $\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} $ for $\left| P \right|$ and the value 1 for $\left| {\hat i} \right|$ in the above relation, we get
$\cos \alpha = \dfrac{{\left( {{P_1}\hat i + {P_2}\hat j + {P_3}\hat k} \right).\hat i}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$
The equation can be simplified as
$\cos \alpha = \dfrac{{{P_1}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$, as $\hat i.\hat i = 1$
Similarly, the relations can be derived for the $\cos \beta $ and $\cos \gamma $.
$\cos \beta = \dfrac{{{P_2}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$
$\cos \gamma = \dfrac{{{P_3}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$
We can simplify the given relation ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ by using the trigonometric identity ${\sin ^2}\theta = 1 - {\cos ^2}\theta $, we get
$
1 - {\cos ^2}\alpha + 1 - {\cos ^2}\beta + 1 - {\cos ^2}\gamma \\
\Rightarrow 3 - \left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right) \\
$
Substituting the values of $\cos \alpha ,\cos \beta $ and $\cos \gamma $ in the desired relation $3 - \left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right)$
$3 - \left( {{{\left( {\dfrac{{{P_1}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2} + {{\left( {\dfrac{{{P_2}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2} + {{\left( {\dfrac{{{P_3}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2}} \right)$
Simplifying the above expression, we get
$
3 - \left( {\dfrac{{{P_1}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}} + \dfrac{{{P_2}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}} + \dfrac{{{P_3}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}}} \right) \\
\Rightarrow 3 - \left( {\dfrac{{{P_1}^2 + {P_2}^2 + {P_3}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}}} \right) \\
\Rightarrow 3 - \left( 1 \right) \\
\Rightarrow 2 \\
$
Thus the option C is the correct option.
Note: If the angle between two vectors, $\overrightarrow A $ and $\overrightarrow B $ is $\theta $, then we can say $\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}$. The dot product of the two vectors \[{A_1}\hat i + {A_2}\hat j + {A_3}\hat k\] and \[{B_1}\hat i + {B_2}\hat j + {B_3}\hat k\] can be simplified as ${A_1}{B_1} + {A_2}{B_2} + {A_3}{B_3}$. Thus the value $\left( {{P_1}\hat i + {P_2}\hat j + {P_3}\hat k} \right).\hat i$ is simplified as ${P_1} + 0 + 0$ = ${P_1}$.
Complete step by step solution:
Let us assume the three dimensional $\overrightarrow P $ be \[{P_1}\hat i + {P_2}\hat j + {P_3}\hat k\]. Then the magnitude of the vector $\overrightarrow P $ will be
$\left| P \right| = \sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} $
It is known that if the angle between two vectors, $\overrightarrow A $ and $\overrightarrow B $ is $\theta $, then the given relation is valid.
$\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}$.
As we are given in the question, the angle between the vector $\overrightarrow P $ and $x$ axis is $\alpha $.
The unit vector in the direction of the $x$ axis is given by $\hat i$. The magnitude of the unit vector is 1.
Substituting the value $\alpha $ for $\theta $, value $\overrightarrow P $ for $\overrightarrow A $ and value $\hat i$ for $\overrightarrow B $ in the relation $\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}$, we get
$\cos \alpha = \dfrac{{\overrightarrow P .\hat i}}{{\left| P \right|\left| {\hat i} \right|}}$
Substituting the value \[{P_1}\hat i + {P_2}\hat j + {P_3}\hat k\] for $\overrightarrow P $, the value $\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} $ for $\left| P \right|$ and the value 1 for $\left| {\hat i} \right|$ in the above relation, we get
$\cos \alpha = \dfrac{{\left( {{P_1}\hat i + {P_2}\hat j + {P_3}\hat k} \right).\hat i}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$
The equation can be simplified as
$\cos \alpha = \dfrac{{{P_1}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$, as $\hat i.\hat i = 1$
Similarly, the relations can be derived for the $\cos \beta $ and $\cos \gamma $.
$\cos \beta = \dfrac{{{P_2}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$
$\cos \gamma = \dfrac{{{P_3}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}$
We can simplify the given relation ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ by using the trigonometric identity ${\sin ^2}\theta = 1 - {\cos ^2}\theta $, we get
$
1 - {\cos ^2}\alpha + 1 - {\cos ^2}\beta + 1 - {\cos ^2}\gamma \\
\Rightarrow 3 - \left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right) \\
$
Substituting the values of $\cos \alpha ,\cos \beta $ and $\cos \gamma $ in the desired relation $3 - \left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right)$
$3 - \left( {{{\left( {\dfrac{{{P_1}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2} + {{\left( {\dfrac{{{P_2}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2} + {{\left( {\dfrac{{{P_3}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2}} \right)$
Simplifying the above expression, we get
$
3 - \left( {\dfrac{{{P_1}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}} + \dfrac{{{P_2}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}} + \dfrac{{{P_3}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}}} \right) \\
\Rightarrow 3 - \left( {\dfrac{{{P_1}^2 + {P_2}^2 + {P_3}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}}} \right) \\
\Rightarrow 3 - \left( 1 \right) \\
\Rightarrow 2 \\
$
Thus the option C is the correct option.
Note: If the angle between two vectors, $\overrightarrow A $ and $\overrightarrow B $ is $\theta $, then we can say $\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}$. The dot product of the two vectors \[{A_1}\hat i + {A_2}\hat j + {A_3}\hat k\] and \[{B_1}\hat i + {B_2}\hat j + {B_3}\hat k\] can be simplified as ${A_1}{B_1} + {A_2}{B_2} + {A_3}{B_3}$. Thus the value $\left( {{P_1}\hat i + {P_2}\hat j + {P_3}\hat k} \right).\hat i$ is simplified as ${P_1} + 0 + 0$ = ${P_1}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

