
If a vector $2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge $ is perpendicular to the vector $4\mathop j\limits^ \wedge - 4\mathop i\limits^ \wedge + \alpha \mathop k\limits^ \wedge $ then the value $\alpha $ is
$\left( a \right){\text{ }}\dfrac{1}{2}$
$\left( b \right){\text{ }}\dfrac{{ - 1}}{2}$
$\left( c \right){\text{ 1}}$
$\left( d \right){\text{ - 1}}$
Answer
505.8k+ views
Hint:
For solving this question we need to know one of the applications of dot product which is when the two vectors are perpendicular to each other, then their dot product is always zero. So by using this we will be able to solve this question.
Formula used:
If $\vec a$ is perpendicular to the $\vec b$ then,
$\vec a \cdot \vec b = 0$
Here, $\vec a\& \vec b$ , are the two vectors
Complete step by step solution:
For solving this question, we will let these two vectors named as
$ \Rightarrow \vec a = 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge $
And, $\vec b = 4\mathop j\limits^ \wedge - 4\mathop i\limits^ \wedge + \alpha \mathop k\limits^ \wedge $
Now we will solve it, as we already know that their dot product will be zero, so writing the equation mathematically we get
$ \Rightarrow \left( {2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge } \right) \cdot \left( {4\mathop j\limits^ \wedge - 4\mathop i\limits^ \wedge + \alpha \mathop k\limits^ \wedge } \right) = 0$
Now on rearranging the equation in the standard form, we get
$ \Rightarrow \left( {2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge } \right) \cdot \left( { - 4\mathop i\limits^ \wedge + 4\mathop j\limits^ \wedge + \alpha \mathop k\limits^ \wedge } \right) = 0$
Now on solving the above equation, we get
\[ \Rightarrow - 8\mathop i\limits^ \wedge \cdot \mathop i\limits^ \wedge + 8\mathop i\limits^ \wedge \cdot \mathop j\limits^ \wedge + 2\alpha \mathop i\limits^ \wedge \cdot \mathop k\limits^ \wedge - 12\mathop j\limits^ \wedge \cdot \mathop i\limits^ \wedge + 12\mathop j\limits^ \wedge \cdot \mathop j\limits^ \wedge + 3\alpha \mathop j\limits^ \wedge \cdot \mathop k\limits^ \wedge - 32\mathop k\limits^ \wedge \cdot \mathop i\limits^ \wedge + 32\mathop k\limits^ \wedge \cdot \mathop j\limits^ \wedge + 8\alpha \mathop k\limits^ \wedge \cdot \mathop k\limits^ \wedge = 0\]
Now on solving the above equation using the concept of dot products, we get
$ \Rightarrow - 8 + 12 + 8\alpha = 0$
Now taking the constant term to the other side we get
$ \Rightarrow 8\alpha = - 4$
Now on further solving for the value, we get
$ \Rightarrow \alpha = \dfrac{{ - 1}}{2}$
Therefore, the value of $\alpha $ is $\dfrac{{ - 1}}{2}$.
Hence, the option $\left( b \right)$ is correct.
Note:
So for solving this we should know the dot product and cross-product multiplication, $\mathop i\limits^ \wedge \cdot \mathop i\limits^ \wedge = \mathop k\limits^ \wedge \cdot \mathop k\limits^ \wedge = \mathop j\limits^ \wedge \cdot \mathop j\limits^ \wedge = 1$ and similarly the $\mathop i\limits^ \wedge \cdot \mathop j\limits^ \wedge = \mathop j\limits^ \wedge \cdot \mathop k\limits^ \wedge = \mathop k\limits^ \wedge \cdot \mathop i\limits^ \wedge = 0$ . By using this we can solve the problem easily. Therefore, in the concept of vectors, if the vectors are similar then their product is always equal to one and if it is non-similar then their dot product will be zero. Similarly for the cross product of any vector with itself will always equal zero and with the other, the cross product will in two terms: when in cyclic pair \[\mathop i\limits^ \wedge \times \mathop j\limits^ \wedge = \mathop k\limits^ \wedge ,\mathop j\limits^ \wedge \times \mathop k\limits^ \wedge = \mathop i\limits^ \wedge ,\mathop k\limits^ \wedge \times \mathop i\limits^ \wedge = \mathop j\limits^ \wedge \] and if it’s in an anti-cyclic pair then it will be negative.
For solving this question we need to know one of the applications of dot product which is when the two vectors are perpendicular to each other, then their dot product is always zero. So by using this we will be able to solve this question.
Formula used:
If $\vec a$ is perpendicular to the $\vec b$ then,
$\vec a \cdot \vec b = 0$
Here, $\vec a\& \vec b$ , are the two vectors
Complete step by step solution:
For solving this question, we will let these two vectors named as
$ \Rightarrow \vec a = 2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge $
And, $\vec b = 4\mathop j\limits^ \wedge - 4\mathop i\limits^ \wedge + \alpha \mathop k\limits^ \wedge $
Now we will solve it, as we already know that their dot product will be zero, so writing the equation mathematically we get
$ \Rightarrow \left( {2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge } \right) \cdot \left( {4\mathop j\limits^ \wedge - 4\mathop i\limits^ \wedge + \alpha \mathop k\limits^ \wedge } \right) = 0$
Now on rearranging the equation in the standard form, we get
$ \Rightarrow \left( {2\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge + 8\mathop k\limits^ \wedge } \right) \cdot \left( { - 4\mathop i\limits^ \wedge + 4\mathop j\limits^ \wedge + \alpha \mathop k\limits^ \wedge } \right) = 0$
Now on solving the above equation, we get
\[ \Rightarrow - 8\mathop i\limits^ \wedge \cdot \mathop i\limits^ \wedge + 8\mathop i\limits^ \wedge \cdot \mathop j\limits^ \wedge + 2\alpha \mathop i\limits^ \wedge \cdot \mathop k\limits^ \wedge - 12\mathop j\limits^ \wedge \cdot \mathop i\limits^ \wedge + 12\mathop j\limits^ \wedge \cdot \mathop j\limits^ \wedge + 3\alpha \mathop j\limits^ \wedge \cdot \mathop k\limits^ \wedge - 32\mathop k\limits^ \wedge \cdot \mathop i\limits^ \wedge + 32\mathop k\limits^ \wedge \cdot \mathop j\limits^ \wedge + 8\alpha \mathop k\limits^ \wedge \cdot \mathop k\limits^ \wedge = 0\]
Now on solving the above equation using the concept of dot products, we get
$ \Rightarrow - 8 + 12 + 8\alpha = 0$
Now taking the constant term to the other side we get
$ \Rightarrow 8\alpha = - 4$
Now on further solving for the value, we get
$ \Rightarrow \alpha = \dfrac{{ - 1}}{2}$
Therefore, the value of $\alpha $ is $\dfrac{{ - 1}}{2}$.
Hence, the option $\left( b \right)$ is correct.
Note:
So for solving this we should know the dot product and cross-product multiplication, $\mathop i\limits^ \wedge \cdot \mathop i\limits^ \wedge = \mathop k\limits^ \wedge \cdot \mathop k\limits^ \wedge = \mathop j\limits^ \wedge \cdot \mathop j\limits^ \wedge = 1$ and similarly the $\mathop i\limits^ \wedge \cdot \mathop j\limits^ \wedge = \mathop j\limits^ \wedge \cdot \mathop k\limits^ \wedge = \mathop k\limits^ \wedge \cdot \mathop i\limits^ \wedge = 0$ . By using this we can solve the problem easily. Therefore, in the concept of vectors, if the vectors are similar then their product is always equal to one and if it is non-similar then their dot product will be zero. Similarly for the cross product of any vector with itself will always equal zero and with the other, the cross product will in two terms: when in cyclic pair \[\mathop i\limits^ \wedge \times \mathop j\limits^ \wedge = \mathop k\limits^ \wedge ,\mathop j\limits^ \wedge \times \mathop k\limits^ \wedge = \mathop i\limits^ \wedge ,\mathop k\limits^ \wedge \times \mathop i\limits^ \wedge = \mathop j\limits^ \wedge \] and if it’s in an anti-cyclic pair then it will be negative.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
