
If \[A = {\tan ^{ - 1}}\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right)\& B = {\tan ^{ - 1}}\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right),\] then that value of \[A - B\] is
A) \[{0^ \circ }\]
B) \[{45^ \circ }\]
C) \[{60^ \circ }\]
D) \[{30^ \circ }\]
Answer
607.2k+ views
Hint: Use the formula \[{\tan ^{ - 1}}\theta - {\tan ^{ - 1}}\phi = {\tan ^{ - 1}}\left( {\dfrac{{\theta - \phi }}{{1 - \theta \phi }}} \right)\] to find the value of \[A - B\] you will get something in arctan convert the value inside the arctan to tan then we can get our required answer.
Complete step-by-step answer:
We are given the values of A and B as \[{\tan ^{ - 1}}\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right)\& {\tan ^{ - 1}}\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)\] respectively.
\[\begin{array}{l}
\therefore A - B = {\tan ^{ - 1}}\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right) - \left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)}}{{1 + \left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right)\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{x\sqrt 3 \times K\sqrt 3 - \left( {2x - K} \right)\left( {2K - x} \right)}}{{\left( {2K - x} \right)\left( {K\sqrt 3 } \right)}}}}{{\dfrac{{\left( {2K - x} \right)K\sqrt 3 + \left( {x\sqrt 3 } \right)\left( {2x - K} \right)}}{{\left( {2K - x} \right)\left( {K\sqrt 3 } \right)}}}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{3xK - \left( {4xK - 2{x^2} - 2{K^2} + Kx} \right)}}{{2\sqrt 3 {K^2} - Kx\sqrt 3 + 2\sqrt 3 {x^2} - Kx\sqrt 3 }}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{ - 2xK + 2{x^2} + 2{K^2}}}{{2\sqrt 3 {K^2} - 2\sqrt 3 Kx + 2\sqrt 3 {x^2}}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }} \times \dfrac{{2{x^2} + 2{K^2} - 2Kx}}{{2{x^2} + 2{K^2} - 2Kx}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)
\end{array}\]
So from here we know that \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] and we also know that \[{\tan ^{ - 1}}\left( {\tan y} \right) = y\]
Therefore, by using both of these we can get it as
\[\begin{array}{l}
= {\tan ^{ - 1}}\left( {\tan {{30}^ \circ }} \right)\\
= {30^ \circ }
\end{array}\]
Therefore clearly option D is the correct option here.
Note: In the solution i have often used the term arctan, it must be noted that \[\arctan y = {\tan ^{ - 1}}y\] . Be careful while solving \[{\tan ^{ - 1}}\left( {\dfrac{{\theta - \phi }}{{1 - \theta \phi }}} \right)\] as the calculation is very drastic and students often make mistakes here.
Complete step-by-step answer:
We are given the values of A and B as \[{\tan ^{ - 1}}\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right)\& {\tan ^{ - 1}}\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)\] respectively.
\[\begin{array}{l}
\therefore A - B = {\tan ^{ - 1}}\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right) - \left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)}}{{1 + \left( {\dfrac{{x\sqrt 3 }}{{2K - x}}} \right)\left( {\dfrac{{2x - K}}{{K\sqrt 3 }}} \right)}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{x\sqrt 3 \times K\sqrt 3 - \left( {2x - K} \right)\left( {2K - x} \right)}}{{\left( {2K - x} \right)\left( {K\sqrt 3 } \right)}}}}{{\dfrac{{\left( {2K - x} \right)K\sqrt 3 + \left( {x\sqrt 3 } \right)\left( {2x - K} \right)}}{{\left( {2K - x} \right)\left( {K\sqrt 3 } \right)}}}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{3xK - \left( {4xK - 2{x^2} - 2{K^2} + Kx} \right)}}{{2\sqrt 3 {K^2} - Kx\sqrt 3 + 2\sqrt 3 {x^2} - Kx\sqrt 3 }}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{{ - 2xK + 2{x^2} + 2{K^2}}}{{2\sqrt 3 {K^2} - 2\sqrt 3 Kx + 2\sqrt 3 {x^2}}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }} \times \dfrac{{2{x^2} + 2{K^2} - 2Kx}}{{2{x^2} + 2{K^2} - 2Kx}}} \right)\\
= {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)
\end{array}\]
So from here we know that \[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] and we also know that \[{\tan ^{ - 1}}\left( {\tan y} \right) = y\]
Therefore, by using both of these we can get it as
\[\begin{array}{l}
= {\tan ^{ - 1}}\left( {\tan {{30}^ \circ }} \right)\\
= {30^ \circ }
\end{array}\]
Therefore clearly option D is the correct option here.
Note: In the solution i have often used the term arctan, it must be noted that \[\arctan y = {\tan ^{ - 1}}y\] . Be careful while solving \[{\tan ^{ - 1}}\left( {\dfrac{{\theta - \phi }}{{1 - \theta \phi }}} \right)\] as the calculation is very drastic and students often make mistakes here.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

