
If a line with direction ratio 2 : 2 : 1 intersects the line \[\dfrac{{{\text{x - 7}}}}{3}{\text{ = }}\dfrac{{{\text{y - 5}}}}{2}{\text{ = }}\dfrac{{{\text{z - 3}}}}{1}\] and \[\dfrac{{{\text{x - 1}}}}{2}{\text{ = }}\dfrac{{{\text{y + 1}}}}{4}{\text{ = }}\dfrac{{{\text{z + 1}}}}{3}\] at A and B then AB =
A. $\sqrt 2 $ units
B. 2 units
C. $\sqrt 3 $ units
D. 3 units
Answer
596.7k+ views
Hint: To solve this question, we will find the value of point A and B by letting \[\dfrac{{{\text{x - 7}}}}{3}{\text{ = }}\dfrac{{{\text{y - 5}}}}{2}{\text{ = }}\dfrac{{{\text{z - 3}}}}{1}\] = $\lambda $ and \[\dfrac{{{\text{x - 1}}}}{2}{\text{ = }}\dfrac{{{\text{y + 1}}}}{4}{\text{ = }}\dfrac{{{\text{z + 1}}}}{3}\] = $\mu $. Then we will find the direction ratios of AB and compare it to the given direction ratios. We will use the distance formula to find AB.
Complete step-by-step answer:
Now, the line having direction ratio 2: 2: 1 intersect the line \[\dfrac{{{\text{x - 7}}}}{3}{\text{ = }}\dfrac{{{\text{y - 5}}}}{2}{\text{ = }}\dfrac{{{\text{z - 3}}}}{1}\] at point A. So, we will find the coordinates of point A and as both lines intersect, so A should satisfy both the lines.
Let \[\dfrac{{{\text{x - 7}}}}{3}{\text{ = }}\dfrac{{{\text{y - 5}}}}{2}{\text{ = }}\dfrac{{{\text{z - 3}}}}{1}\] = $\lambda $. So, we get
${\text{x - 7 = 3}}\lambda $. So, ${\text{x = 3}}\lambda {\text{ + }}{\text{ 7}}$. Similarly, we get \[{\text{y = 2}}\lambda {\text{ + 5}}\] and \[{\text{z = }}\lambda {\text{ + 3}}\]. So, coordinates of point A are ($3\lambda {\text{ + 7}}$, $2\lambda {\text{ + 5}}$, $\lambda {\text{ + 3}}$). Also, the line intersects \[\dfrac{{{\text{x - 1}}}}{2}{\text{ = }}\dfrac{{{\text{y + 1}}}}{4}{\text{ = }}\dfrac{{{\text{z + 1}}}}{3}\] at point B.
So, let \[\dfrac{{{\text{x - 1}}}}{2}{\text{ = }}\dfrac{{{\text{y + 1}}}}{4}{\text{ = }}\dfrac{{{\text{z + 1}}}}{3}\] = $\mu $. Proceeding exactly the same in the above case, we get the coordinates of point B. So, coordinates of point B are ($2\mu {\text{ + 1}}$, $4\mu {\text{ - 1}}$, $3\mu {\text{ - 1}}$).
Now, direction ratios of line AB = ($2\mu {\text{ + 1}}$ - ($3\lambda {\text{ + 7}}$), $4\mu {\text{ - 1}}$ - ($2\lambda {\text{ + 5}}$), $3\mu {\text{ - 1}}$ - ($\lambda {\text{ + 3}}$)). So, direction ratios of AB are ($2\mu {\text{ - 3}}\lambda {\text{ - 6}}$, $4\mu {\text{ - 2}}\lambda {\text{ - 6}}$, $3\mu {\text{ - }}\lambda {\text{ - 4}}$). Now, as the points A and B are lying on the line having direction ratio 2: 2: 1. So, the direction ratios of AB will equal to direction ratios of line.
So, we get \[\dfrac{{2\mu {\text{ - 3}}\lambda {\text{ - 6}}}}{2}{\text{ = }}\dfrac{{4\mu {\text{ - 2}}\lambda {\text{ - 6}}}}{2}{\text{ = }}\dfrac{{3\mu {\text{ - }}\lambda {\text{ - 4}}}}{1}\]. So, we get
$2\mu {\text{ - 3}}\lambda {\text{ - 6 = 4}}\mu {\text{ - 2}}\lambda {\text{ - 6}}$
$ \Rightarrow $ $\lambda {\text{ = - 2}}\mu $ … (1)
Also, $2\mu {\text{ - 3}}\lambda {\text{ - 6 = 6}}\mu {\text{ - 2}}\lambda {\text{ - 8}}$
$ \Rightarrow $ $4\mu {\text{ + }}\lambda {\text{ - 2 = 0}}$
Putting $\lambda {\text{ = - 2}}\mu $ from equation (1), we get
$4\mu {\text{ - 2}}\mu {\text{ - 2 = 0}}$ $ \Rightarrow $ $\mu {\text{ = 1}}$
so, from equation (1), we get $\lambda {\text{ = - 2}}$. Putting these values to find the value of A and B, we get
A = (1, 1, 1) and B = (3, 3, 2)
Now, we will use the distance formula to find AB. Distance formula is given by
D = $\sqrt {{{\left( {{{\text{x}}_2}{\text{ - }}{{\text{x}}_1}} \right)}^2}{\text{ + (}}{{\text{y}}_2}{\text{ - }}{{\text{y}}_1}{)^2}{\text{ + (}}{{\text{z}}_2}{\text{ - }}{{\text{z}}_1}{)^2}} $, where D is the distance between two given points.
So, applying the values in the above formula, we get
AB = $\sqrt {{{\left( {{\text{3 - 1}}} \right)}^2}{\text{ + (3 - 1}}{)^2}{\text{ + (2 - 1}}{)^2}} $ = $\sqrt {{2^2}{\text{ + }}{{\text{2}}^2}{\text{ + }}{{\text{1}}^2}} $
So, AB = $\sqrt 9 $ = 3units
So, option (D) is correct.
Note: When we come up with such types of questions, we have to find the value of intersecting points from the given equations of lines. Then we find the direction ratios of the points found and compare it to the given direction ratios. After it we will find the value of the distance asked by using the distance formula.
Complete step-by-step answer:
Now, the line having direction ratio 2: 2: 1 intersect the line \[\dfrac{{{\text{x - 7}}}}{3}{\text{ = }}\dfrac{{{\text{y - 5}}}}{2}{\text{ = }}\dfrac{{{\text{z - 3}}}}{1}\] at point A. So, we will find the coordinates of point A and as both lines intersect, so A should satisfy both the lines.
Let \[\dfrac{{{\text{x - 7}}}}{3}{\text{ = }}\dfrac{{{\text{y - 5}}}}{2}{\text{ = }}\dfrac{{{\text{z - 3}}}}{1}\] = $\lambda $. So, we get
${\text{x - 7 = 3}}\lambda $. So, ${\text{x = 3}}\lambda {\text{ + }}{\text{ 7}}$. Similarly, we get \[{\text{y = 2}}\lambda {\text{ + 5}}\] and \[{\text{z = }}\lambda {\text{ + 3}}\]. So, coordinates of point A are ($3\lambda {\text{ + 7}}$, $2\lambda {\text{ + 5}}$, $\lambda {\text{ + 3}}$). Also, the line intersects \[\dfrac{{{\text{x - 1}}}}{2}{\text{ = }}\dfrac{{{\text{y + 1}}}}{4}{\text{ = }}\dfrac{{{\text{z + 1}}}}{3}\] at point B.
So, let \[\dfrac{{{\text{x - 1}}}}{2}{\text{ = }}\dfrac{{{\text{y + 1}}}}{4}{\text{ = }}\dfrac{{{\text{z + 1}}}}{3}\] = $\mu $. Proceeding exactly the same in the above case, we get the coordinates of point B. So, coordinates of point B are ($2\mu {\text{ + 1}}$, $4\mu {\text{ - 1}}$, $3\mu {\text{ - 1}}$).
Now, direction ratios of line AB = ($2\mu {\text{ + 1}}$ - ($3\lambda {\text{ + 7}}$), $4\mu {\text{ - 1}}$ - ($2\lambda {\text{ + 5}}$), $3\mu {\text{ - 1}}$ - ($\lambda {\text{ + 3}}$)). So, direction ratios of AB are ($2\mu {\text{ - 3}}\lambda {\text{ - 6}}$, $4\mu {\text{ - 2}}\lambda {\text{ - 6}}$, $3\mu {\text{ - }}\lambda {\text{ - 4}}$). Now, as the points A and B are lying on the line having direction ratio 2: 2: 1. So, the direction ratios of AB will equal to direction ratios of line.
So, we get \[\dfrac{{2\mu {\text{ - 3}}\lambda {\text{ - 6}}}}{2}{\text{ = }}\dfrac{{4\mu {\text{ - 2}}\lambda {\text{ - 6}}}}{2}{\text{ = }}\dfrac{{3\mu {\text{ - }}\lambda {\text{ - 4}}}}{1}\]. So, we get
$2\mu {\text{ - 3}}\lambda {\text{ - 6 = 4}}\mu {\text{ - 2}}\lambda {\text{ - 6}}$
$ \Rightarrow $ $\lambda {\text{ = - 2}}\mu $ … (1)
Also, $2\mu {\text{ - 3}}\lambda {\text{ - 6 = 6}}\mu {\text{ - 2}}\lambda {\text{ - 8}}$
$ \Rightarrow $ $4\mu {\text{ + }}\lambda {\text{ - 2 = 0}}$
Putting $\lambda {\text{ = - 2}}\mu $ from equation (1), we get
$4\mu {\text{ - 2}}\mu {\text{ - 2 = 0}}$ $ \Rightarrow $ $\mu {\text{ = 1}}$
so, from equation (1), we get $\lambda {\text{ = - 2}}$. Putting these values to find the value of A and B, we get
A = (1, 1, 1) and B = (3, 3, 2)
Now, we will use the distance formula to find AB. Distance formula is given by
D = $\sqrt {{{\left( {{{\text{x}}_2}{\text{ - }}{{\text{x}}_1}} \right)}^2}{\text{ + (}}{{\text{y}}_2}{\text{ - }}{{\text{y}}_1}{)^2}{\text{ + (}}{{\text{z}}_2}{\text{ - }}{{\text{z}}_1}{)^2}} $, where D is the distance between two given points.
So, applying the values in the above formula, we get
AB = $\sqrt {{{\left( {{\text{3 - 1}}} \right)}^2}{\text{ + (3 - 1}}{)^2}{\text{ + (2 - 1}}{)^2}} $ = $\sqrt {{2^2}{\text{ + }}{{\text{2}}^2}{\text{ + }}{{\text{1}}^2}} $
So, AB = $\sqrt 9 $ = 3units
So, option (D) is correct.
Note: When we come up with such types of questions, we have to find the value of intersecting points from the given equations of lines. Then we find the direction ratios of the points found and compare it to the given direction ratios. After it we will find the value of the distance asked by using the distance formula.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

