
If $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]$ , then ${A^n} = {2^k}A$ , where k= ?
A. ${2^{n - 1}}$
B. n+1
C. n-1
D. $2\left( {n - 1} \right)$
Answer
576.6k+ views
Hint: In this question to find the value of k we will find the value of ${A^2}$, ${A^3}$ and, \[{A^4}\] with the help of the property of matrix i.e.
$\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$
Now we will find the value of ${A^2}$ , ${A^3}$ and, \[{A^4}\] in terms A so that we can compare these equations with the given equation i.e. ${A^n} = {2^k}A$ so that we can find the relation between n and k to get the required answer.
Complete step-by-step answer:
Given data: $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]$
We know that, $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$
Therefore using this property on matrix A
$ \Rightarrow A = 2\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]...........(i)$
Multiplying both sides by matrix A
$ \Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$
On multiplication of matrix and simplification we get,
$ \Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]$
On simplifying the elements of the matrix we get,
$ \Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]..................(ii)$
Now, we know that $\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right] = A$
$ \Rightarrow {A^2} = {2^2}A.............(iii)$
Now using the property of a matrix i.e. $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$ in equation(ii)
$ \Rightarrow {A^2} = {2^3}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$
On multiplying equation(i) and equation(ii)
$ \Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$
On multiplication of matrix and simplification
$ \Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]$
On simplifying the elements of the matrix
\[ \Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right].................(iv)\]
Now, we know that $\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right] = A$
$ \Rightarrow {A^3} = {2^4}A............(v)$
Now using the property of a matrix i.e. $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$ in equation(iv)
\[ \Rightarrow {A^3} = {2^5}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
Now multiplying equation(i) and equation(iv)
\[ \Rightarrow {A^4} = {2^6}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
On multiplication of matrix and simplification
$ \Rightarrow {A^4} = {2^6}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]$
On simplifying the elements of the matrix
\[ \Rightarrow {A^4} = {2^6}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]\]
Now, we know that $\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right] = A$
$ \Rightarrow {A^4} = {2^6}A...............(vi)$
Now on concluding from equation (iii), equation(v) and, equation(vi)
We can say that, $k = 2\left( {n - 1} \right)$
Hence, Option (D) is correct.
Note: While taking common any scalar elements from the square matrix some of the students apply the property of the determinant
i.e. $\left| {\begin{array}{*{20}{c}}
{ka}&{kb} \\
{tc}&{td}
\end{array}} \right| = kt\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|$ or $\left| {\begin{array}{*{20}{c}}
{ka}&{kb} \\
{kc}&{kd}
\end{array}} \right| = {k^2}\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|$
which is not applicable for the matrix as the matrix follow the property
i.e. $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$
so most of the students make mistakes while taking common like while finding the ${A^2}$ using the equation (ii)
i.e. ${A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]$
$ \Rightarrow {A^2} = {2^2} \times 2 \times 2\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$ , which is not correct and will take us to the wrong answer, so avoid making mistakes like this to get the correct answer.
$\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$
Now we will find the value of ${A^2}$ , ${A^3}$ and, \[{A^4}\] in terms A so that we can compare these equations with the given equation i.e. ${A^n} = {2^k}A$ so that we can find the relation between n and k to get the required answer.
Complete step-by-step answer:
Given data: $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]$
We know that, $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$
Therefore using this property on matrix A
$ \Rightarrow A = 2\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]...........(i)$
Multiplying both sides by matrix A
$ \Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$
On multiplication of matrix and simplification we get,
$ \Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]$
On simplifying the elements of the matrix we get,
$ \Rightarrow {A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]..................(ii)$
Now, we know that $\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right] = A$
$ \Rightarrow {A^2} = {2^2}A.............(iii)$
Now using the property of a matrix i.e. $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$ in equation(ii)
$ \Rightarrow {A^2} = {2^3}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$
On multiplying equation(i) and equation(ii)
$ \Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$
On multiplication of matrix and simplification
$ \Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]$
On simplifying the elements of the matrix
\[ \Rightarrow {A^3} = {2^4}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right].................(iv)\]
Now, we know that $\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right] = A$
$ \Rightarrow {A^3} = {2^4}A............(v)$
Now using the property of a matrix i.e. $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$ in equation(iv)
\[ \Rightarrow {A^3} = {2^5}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
Now multiplying equation(i) and equation(iv)
\[ \Rightarrow {A^4} = {2^6}\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]\]
On multiplication of matrix and simplification
$ \Rightarrow {A^4} = {2^6}\left[ {\begin{array}{*{20}{c}}
{1 + 1}&{ - 1 - 1} \\
{ - 1 - 1}&{1 + 1}
\end{array}} \right]$
On simplifying the elements of the matrix
\[ \Rightarrow {A^4} = {2^6}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]\]
Now, we know that $\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right] = A$
$ \Rightarrow {A^4} = {2^6}A...............(vi)$
Now on concluding from equation (iii), equation(v) and, equation(vi)
We can say that, $k = 2\left( {n - 1} \right)$
Hence, Option (D) is correct.
Note: While taking common any scalar elements from the square matrix some of the students apply the property of the determinant
i.e. $\left| {\begin{array}{*{20}{c}}
{ka}&{kb} \\
{tc}&{td}
\end{array}} \right| = kt\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|$ or $\left| {\begin{array}{*{20}{c}}
{ka}&{kb} \\
{kc}&{kd}
\end{array}} \right| = {k^2}\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right|$
which is not applicable for the matrix as the matrix follow the property
i.e. $\left[ {\begin{array}{*{20}{c}}
{ak}&{bk} \\
{ck}&{dk}
\end{array}} \right] = k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$
so most of the students make mistakes while taking common like while finding the ${A^2}$ using the equation (ii)
i.e. ${A^2} = {2^2}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 2}&2
\end{array}} \right]$
$ \Rightarrow {A^2} = {2^2} \times 2 \times 2\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 1}&1
\end{array}} \right]$ , which is not correct and will take us to the wrong answer, so avoid making mistakes like this to get the correct answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

