
If $ A = \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] $ and $ {A^3} - 6{A^2} + 7A + K{I_3} = 0 $ find k.
Answer
552.9k+ views
Hint: Matrix is the set of the arranged numbers. We get its multiplication by multiplying corresponding rows into the columns. First we will find the square of the matrix and then the square matrix is multiplied with the matrix for the cube of matrix and at last will substitute values in the given equation.
Complete step-by-step answer:
First find the square of the matrix.
$ {A^2} = A \times A $
Place value in the above equation –
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] $
Multiply the above matrices and open the brackets with multiplying subsequent rows with columns.
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
{1(1) + 0(0) + 2(2)}&{0(1) + 2(0) + 0(2)}&{2(1) + 1(0) + 3(2)} \\
{1(0) + 0(2) + 2(1)}&{0(0) + 2(2) + 0(1)}&{2(0) + 1(2) + 3(1)} \\
{1(2) + 0(0) + 2(3)}&{0(2) + 2(0) + 0(3)}&{2(2) + 1(0) + 3(3)}
\end{array}} \right] $
Simplify the above equation –
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 0 + 4}&{0 + 0 + 0}&{2 + 0 + 6} \\
{0 + 0 + 2}&{0 + 4 + 0}&{0 + 2 + 3} \\
{2 + 0 + 6}&{0 + 0 + 0}&{4 + 0 + 9}
\end{array}} \right] $
Simplify –
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
5&0&8 \\
2&4&5 \\
8&0&{13}
\end{array}} \right] $ ..... (A)
Now, the cube of the matrix is equal to product of the square matrix with matrix.
$ {A^3} = {A^2} \cdot A $
Place the values in the above equation –
$ {A^3} = \left[ {\begin{array}{*{20}{c}}
5&0&8 \\
2&4&5 \\
8&0&{13}
\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] $
Multiply and simplify –
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{21}&0&{34} \\
{12}&8&{23} \\
{34}&0&{55}
\end{array}} \right] $ ..... (B)
Now, the given equation –
$ {A^3} - 6{A^2} + 7A + K{I_3} = 0 $
Place values in the above equation –
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{21}&0&{34} \\
{12}&8&{23} \\
{34}&0&{55}
\end{array}} \right] - 6\left[ {\begin{array}{*{20}{c}}
5&0&8 \\
2&4&5 \\
8&0&{13}
\end{array}} \right] + 7\left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] + k\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = 0 $
Multiply the numbers outside with the respective matrices.
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{21}&0&{34} \\
{12}&8&{23} \\
{34}&0&{55}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{30}&0&{48} \\
{12}&{24}&{30} \\
{48}&0&{48}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
7&0&{14} \\
0&{14}&7 \\
{14}&0&{21}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
k&0&0 \\
0&k&0 \\
0&0&k
\end{array}} \right] = 0 $
Open the brackets, and apply operations accordingly
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{21 - 30 + 7 + k}&{0 + 0 + 0 + 0}&{34 - 48 + 14 + 0} \\
{12 - 12 + 0 + 0}&{8 - 24 + 14 + k}&{23 - 30 + 7 + 0} \\
{34 - 48 + 14 + 0}&{0 + 0 + 0 + 0}&{55 - 48 + 21 + k}
\end{array}} \right] = 0 $
Simplify the above matrix
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 2 + k}&0&0 \\
0&{ - 2 + k}&0 \\
0&0&{ - 2 + k}
\end{array}} \right] = 0 $
The above equation implies –
$ - 2 + k = 0 $
Make the required unknown “K” the subject –
$ \Rightarrow k = 2 $ is the required answer.
So, the correct answer is “2”.
Note: Matrix was introduced by the British Mathematician Arthur Cayley in the year 1858. We get the transpose of the square matrix by changing the rows of the original matrix changes to columns and columns are changed to rows. It is denoted by $ {A^T} $ . The determinant of the matrix is a special number which can be calculated from the square matrix. Be careful while multiplying the matrices, as a single mistake will lead to the wrong required answer. Follow step by step approach, it's lengthy but easy.
Complete step-by-step answer:
First find the square of the matrix.
$ {A^2} = A \times A $
Place value in the above equation –
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] $
Multiply the above matrices and open the brackets with multiplying subsequent rows with columns.
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
{1(1) + 0(0) + 2(2)}&{0(1) + 2(0) + 0(2)}&{2(1) + 1(0) + 3(2)} \\
{1(0) + 0(2) + 2(1)}&{0(0) + 2(2) + 0(1)}&{2(0) + 1(2) + 3(1)} \\
{1(2) + 0(0) + 2(3)}&{0(2) + 2(0) + 0(3)}&{2(2) + 1(0) + 3(3)}
\end{array}} \right] $
Simplify the above equation –
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 0 + 4}&{0 + 0 + 0}&{2 + 0 + 6} \\
{0 + 0 + 2}&{0 + 4 + 0}&{0 + 2 + 3} \\
{2 + 0 + 6}&{0 + 0 + 0}&{4 + 0 + 9}
\end{array}} \right] $
Simplify –
$ {A^2} = \left[ {\begin{array}{*{20}{c}}
5&0&8 \\
2&4&5 \\
8&0&{13}
\end{array}} \right] $ ..... (A)
Now, the cube of the matrix is equal to product of the square matrix with matrix.
$ {A^3} = {A^2} \cdot A $
Place the values in the above equation –
$ {A^3} = \left[ {\begin{array}{*{20}{c}}
5&0&8 \\
2&4&5 \\
8&0&{13}
\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] $
Multiply and simplify –
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{21}&0&{34} \\
{12}&8&{23} \\
{34}&0&{55}
\end{array}} \right] $ ..... (B)
Now, the given equation –
$ {A^3} - 6{A^2} + 7A + K{I_3} = 0 $
Place values in the above equation –
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{21}&0&{34} \\
{12}&8&{23} \\
{34}&0&{55}
\end{array}} \right] - 6\left[ {\begin{array}{*{20}{c}}
5&0&8 \\
2&4&5 \\
8&0&{13}
\end{array}} \right] + 7\left[ {\begin{array}{*{20}{c}}
1&0&2 \\
0&2&1 \\
2&0&3
\end{array}} \right] + k\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = 0 $
Multiply the numbers outside with the respective matrices.
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{21}&0&{34} \\
{12}&8&{23} \\
{34}&0&{55}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{30}&0&{48} \\
{12}&{24}&{30} \\
{48}&0&{48}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
7&0&{14} \\
0&{14}&7 \\
{14}&0&{21}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
k&0&0 \\
0&k&0 \\
0&0&k
\end{array}} \right] = 0 $
Open the brackets, and apply operations accordingly
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{21 - 30 + 7 + k}&{0 + 0 + 0 + 0}&{34 - 48 + 14 + 0} \\
{12 - 12 + 0 + 0}&{8 - 24 + 14 + k}&{23 - 30 + 7 + 0} \\
{34 - 48 + 14 + 0}&{0 + 0 + 0 + 0}&{55 - 48 + 21 + k}
\end{array}} \right] = 0 $
Simplify the above matrix
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 2 + k}&0&0 \\
0&{ - 2 + k}&0 \\
0&0&{ - 2 + k}
\end{array}} \right] = 0 $
The above equation implies –
$ - 2 + k = 0 $
Make the required unknown “K” the subject –
$ \Rightarrow k = 2 $ is the required answer.
So, the correct answer is “2”.
Note: Matrix was introduced by the British Mathematician Arthur Cayley in the year 1858. We get the transpose of the square matrix by changing the rows of the original matrix changes to columns and columns are changed to rows. It is denoted by $ {A^T} $ . The determinant of the matrix is a special number which can be calculated from the square matrix. Be careful while multiplying the matrices, as a single mistake will lead to the wrong required answer. Follow step by step approach, it's lengthy but easy.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

