
If \[A = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right|\]and\[I = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\], then which one of the following holds for all\[n \geqslant 1\], by the principle of mathematical induction
A) \[{A^n} = nA - \left( {n - 1} \right)I\]
B) \[{A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I\]
C) \[{A^n} = nA + \left( {n - 1} \right)I\]
D) \[{A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I\]
Answer
586.8k+ views
Hint: Use mathematical induction theorem, which is a mathematical technique that is used to prove a statement, a formula, or a theorem is true for natural value.
In this question, start from checking the options whether the given equation satisfies the given matrix, by finding the value of\[{A^n}\]and then checking for R.H.S of the equation.
A matrix is a rectangular array of tables, symbols, or expressions, arranged in rows and columns.
Complete step by step answer:
\[A = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right|\]
\[I = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\]
In the given options, we can see \[{A^n}\] common for every option; hence find \[{A^n}\]
\[
A = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| \\
{A^2} = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{1 + 0}&0 \\
{1 + 1}&{0 + 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
2&1
\end{array}} \right| \\
{A^3} = A{A^2} = \left| {\begin{array}{*{20}{c}}
1&0 \\
2&1
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{1 + 0}&{0 + 0} \\
{2 + 1}&{0 + 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
3&1
\end{array}} \right| \\
. \\
. \\
. \\
\]
Hence by observing the value of exponents of matrix A, we can write,
\[{A^n} = \left| {\begin{array}{*{20}{c}}
1&0 \\
n&1
\end{array}} \right|\]
Since we have got the value of \[{A^n}\], now check the options for R.H.S
\[{A^n} = nA - \left( {n - 1} \right)I\]
Given R.H.S\[ = nA - \left( {n - 1} \right)I\]
Where
\[nA = n\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right|\]
\[\left( {n - 1} \right)I = \left( {n - 1} \right)\left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
Therefore
\[ = nA - \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right| - \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
n&1
\end{array}} \right|\]
Hence L.H.S=R.H.S
\[{A^n} = nA - \left( {n - 1} \right)I\]
Condition satisfies
\[{A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I\]
\[{2^{n - 1}}A = {2^{n - 1}}\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right|\]
Hence R.H.S
\[{2^{n - 1}}A - \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right| - \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
\[L.H.S \ne R.H.S\]
\[{A^n} = nA + \left( {n - 1} \right)I\]
\[nA = n\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right|\]
\[\left( {n - 1} \right)I = \left( {n - 1} \right)\left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
Therefore
\[ = nA + \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{ - 1}&0 \\
n&{ - 1}
\end{array}} \right|\]
\[L.H.S \ne R.H.S\]
\[{A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I\]
\[{2^{n - 1}}A = {2^{n - 1}}\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right|\]
Hence R.H.S
\[{2^{n - 1}}A + \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
\[L.H.S \ne R.H.S\]
Hence option (A) is correct.
Note: Students must note to do the multiplication of matrix, and this is possible only if the number of rows of the first matrix must be equal to the number of columns of the second matrix and the result will have the same number of rows as the first matrix and the same number of columns as the second matrix.
In this question, start from checking the options whether the given equation satisfies the given matrix, by finding the value of\[{A^n}\]and then checking for R.H.S of the equation.
A matrix is a rectangular array of tables, symbols, or expressions, arranged in rows and columns.
Complete step by step answer:
\[A = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right|\]
\[I = \left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right|\]
In the given options, we can see \[{A^n}\] common for every option; hence find \[{A^n}\]
\[
A = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| \\
{A^2} = \left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{1 + 0}&0 \\
{1 + 1}&{0 + 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
2&1
\end{array}} \right| \\
{A^3} = A{A^2} = \left| {\begin{array}{*{20}{c}}
1&0 \\
2&1
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{1 + 0}&{0 + 0} \\
{2 + 1}&{0 + 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
3&1
\end{array}} \right| \\
. \\
. \\
. \\
\]
Hence by observing the value of exponents of matrix A, we can write,
\[{A^n} = \left| {\begin{array}{*{20}{c}}
1&0 \\
n&1
\end{array}} \right|\]
Since we have got the value of \[{A^n}\], now check the options for R.H.S
\[{A^n} = nA - \left( {n - 1} \right)I\]
Given R.H.S\[ = nA - \left( {n - 1} \right)I\]
Where
\[nA = n\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right|\]
\[\left( {n - 1} \right)I = \left( {n - 1} \right)\left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
Therefore
\[ = nA - \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right| - \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&0 \\
n&1
\end{array}} \right|\]
Hence L.H.S=R.H.S
\[{A^n} = nA - \left( {n - 1} \right)I\]
Condition satisfies
\[{A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I\]
\[{2^{n - 1}}A = {2^{n - 1}}\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right|\]
Hence R.H.S
\[{2^{n - 1}}A - \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right| - \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
\[L.H.S \ne R.H.S\]
\[{A^n} = nA + \left( {n - 1} \right)I\]
\[nA = n\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right|\]
\[\left( {n - 1} \right)I = \left( {n - 1} \right)\left| {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
Therefore
\[ = nA + \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
n&0 \\
n&n
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{ - 1}&0 \\
n&{ - 1}
\end{array}} \right|\]
\[L.H.S \ne R.H.S\]
\[{A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I\]
\[{2^{n - 1}}A = {2^{n - 1}}\left| {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right|\]
Hence R.H.S
\[{2^{n - 1}}A + \left( {n - 1} \right)I = \left| {\begin{array}{*{20}{c}}
{{2^{n - 1}}}&0 \\
{{2^{n - 1}}}&{{2^{n - 1}}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{n - 1}&0 \\
0&{n - 1}
\end{array}} \right|\]
\[L.H.S \ne R.H.S\]
Hence option (A) is correct.
Note: Students must note to do the multiplication of matrix, and this is possible only if the number of rows of the first matrix must be equal to the number of columns of the second matrix and the result will have the same number of rows as the first matrix and the same number of columns as the second matrix.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

