
If \[a\] is a unit vector satisfying \[a\times r=b\], \[a\cdot r=c\] and \[a\cdot b=0\]. Then
determine the value of \[r\] .
(a) \[cb+\left( a\times b \right)\]
(b) \[ca+\left( a\times b \right)\]
(c) \[cb-\left( a\times b \right)\]
(d) \[ca-\left( a\times b \right)\]
Answer
591.9k+ views
Hint: In this question, we will first evaluate the value of \[a\times \left( a\times r \right)\] given that \[a\times r=b\]. Then using the triple cross product formula \[\overrightarrow{a}\times \left(
\overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\cdot
\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}\cdot \overrightarrow{b} \right)\overrightarrow{c}\] for vectors \[\overrightarrow{a}\], \[\overrightarrow{b}\] and
\[\overrightarrow{c}\], we will then find the value of \[a\times \left( a\times r \right)\]. Then using the fact that \[a\] is a unit vector we have \[{{a}^{2}}=1\]. We will then substitute the value \[{{a}^{2}}=1\] and \[a\cdot r=c\] in the expression for \[a\times \left( a\times r \right)\] to get the value of \[r\].
Complete step-by-step answer:
We are given a unit vector \[a\].
\[\Rightarrow {{a}^{2}}=1\]
Since we have \[a\times r=b\], thus on evaluating the value of \[a\times \left( a\times r \right)\] by
substituting \[a\times r=b\] we get
\[a\times \left( a\times r \right)=a\times b\]
Now we know that for vectors \[\overrightarrow{a}\], \[\overrightarrow{b}\] and
\[\overrightarrow{c}\], then the triple cross product of vectors \[\overrightarrow{a}\],
\[\overrightarrow{b}\] and \[\overrightarrow{c}\]is given by
\[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left(
\overrightarrow{a}\cdot \overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}\cdot
\overrightarrow{b} \right)\overrightarrow{c}\]
Using the above formula for the triple cross product in \[a\times \left( a\times r \right)\], we get that
\[a\times \left( a\times r \right)=\left( a\cdot r \right)a-\left( a\cdot a \right)r\]
Now, using \[a\cdot r=c\] in the above equation we have
\[\begin{align}
& a\times \left( a\times r \right)=\left( a\cdot r \right)a-\left( a\cdot a \right)r \\
& =ca-{{a}^{2}}r
\end{align}\]
Since \[a\times \left( a\times r \right)=a\times b\] , thus we have
\[ca-{{a}^{2}}r=a\times b...........(1)\]
Also \[{{a}^{2}}=1\]where \[a\]is a unit vector.
Therefore substituting the value \[{{a}^{2}}=1\] in equation (1) , we get
\[ca-r=a\times b\]
We will now calculate the value of \[r\] by rearranging the terms of the above equation.
By taking vector \[r\] to the right and taking \[a\times b\] to the left side of the equation we get
\[ca-\left( a\times b \right)=r\]
Therefore the value of \[r\] is given by \[ca-\left( a\times b \right)\]
So, the correct answer is “Option (d)”.
Note: In this problem, we have also use the definition of cross product and dot product to get the
desired value of \[r\]. We have \[a\times b=ab\sin \theta \] where \[\theta \] is the angle between \[a\] and \[b\].
Also \[a\cdot b=ab\cos \theta \]. Then using the fact that \[a\cdot b=0\], we say that vectors \[a\] and \[b\] are orthogonal to each other. That is the vectors \[a\] and \[b\] are perpendicular to each other.
\overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}\cdot
\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}\cdot \overrightarrow{b} \right)\overrightarrow{c}\] for vectors \[\overrightarrow{a}\], \[\overrightarrow{b}\] and
\[\overrightarrow{c}\], we will then find the value of \[a\times \left( a\times r \right)\]. Then using the fact that \[a\] is a unit vector we have \[{{a}^{2}}=1\]. We will then substitute the value \[{{a}^{2}}=1\] and \[a\cdot r=c\] in the expression for \[a\times \left( a\times r \right)\] to get the value of \[r\].
Complete step-by-step answer:
We are given a unit vector \[a\].
\[\Rightarrow {{a}^{2}}=1\]
Since we have \[a\times r=b\], thus on evaluating the value of \[a\times \left( a\times r \right)\] by
substituting \[a\times r=b\] we get
\[a\times \left( a\times r \right)=a\times b\]
Now we know that for vectors \[\overrightarrow{a}\], \[\overrightarrow{b}\] and
\[\overrightarrow{c}\], then the triple cross product of vectors \[\overrightarrow{a}\],
\[\overrightarrow{b}\] and \[\overrightarrow{c}\]is given by
\[\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left(
\overrightarrow{a}\cdot \overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}\cdot
\overrightarrow{b} \right)\overrightarrow{c}\]
Using the above formula for the triple cross product in \[a\times \left( a\times r \right)\], we get that
\[a\times \left( a\times r \right)=\left( a\cdot r \right)a-\left( a\cdot a \right)r\]
Now, using \[a\cdot r=c\] in the above equation we have
\[\begin{align}
& a\times \left( a\times r \right)=\left( a\cdot r \right)a-\left( a\cdot a \right)r \\
& =ca-{{a}^{2}}r
\end{align}\]
Since \[a\times \left( a\times r \right)=a\times b\] , thus we have
\[ca-{{a}^{2}}r=a\times b...........(1)\]
Also \[{{a}^{2}}=1\]where \[a\]is a unit vector.
Therefore substituting the value \[{{a}^{2}}=1\] in equation (1) , we get
\[ca-r=a\times b\]
We will now calculate the value of \[r\] by rearranging the terms of the above equation.
By taking vector \[r\] to the right and taking \[a\times b\] to the left side of the equation we get
\[ca-\left( a\times b \right)=r\]
Therefore the value of \[r\] is given by \[ca-\left( a\times b \right)\]
So, the correct answer is “Option (d)”.
Note: In this problem, we have also use the definition of cross product and dot product to get the
desired value of \[r\]. We have \[a\times b=ab\sin \theta \] where \[\theta \] is the angle between \[a\] and \[b\].
Also \[a\cdot b=ab\cos \theta \]. Then using the fact that \[a\cdot b=0\], we say that vectors \[a\] and \[b\] are orthogonal to each other. That is the vectors \[a\] and \[b\] are perpendicular to each other.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

