
If A is a non-singular matrix satisfying $AB-BA=A$, then
(a) $\det \left( B+I \right)=\det \left( B-I \right)$
(b) $\det \left( B+I \right)=-\det \left( B-I \right)$
(c) $\det \left( B+I \right)=\det \left( {{B}^{2}}-I \right)$
(d) None of these
Answer
519k+ views
Hint: We can add $BA$ on both the sides of the given equation to get the equation $AB=A\left( I+B \right)$. On taking the determinant on both the sides, we will get an equation for $\det \left( B+I \right)$. Similarly, on subtracting A and then adding $BA$ on both the sides of the equation, we will get $A\left( B-I \right)=BA$. On taking determinant on both the sides, we will get the equation for $\det \left( B-I \right)$. From the two equations obtained we will get the final answer.
Complete step-by-step answer:
The matrix equation given in the above question is
$\Rightarrow AB-BA=A.......\left( i \right)$
Let us add $BA$ on both the sides of the above equation to get
\[\begin{align}
& \Rightarrow AB-BA+BA=A+BA \\
& \Rightarrow AB=A+BA \\
\end{align}\]
Writing \[A=IA\] in the RHS of the above equation, we get
\[\Rightarrow AB=IA+BA\]
Taking $A$ common on the RHS, we get
\[\Rightarrow AB=\left( I+B \right)A\]
Now, let us take the determinant on both the sides of the above equation to get
\[\Rightarrow \det \left( AB \right)=\det \left[ \left( I+B \right)A \right]\]
From the properties of determinant of a matrix, we know that the determinant of the product of matrices is equal to the product of the determinant of the individual matrices. Therefore, we can write the above equation as
\[\Rightarrow \det \left( A \right)\det \left( B \right)=\det \left( I+B \right)\det \left( A \right)\]
Subtracting \[\det \left( I+B \right)\det \left( A \right)\] from both the sides, we get
\[\begin{align}
& \Rightarrow \det \left( A \right)\det \left( B \right)-\det \left( I+B \right)\det \left( A \right)=\det \left( I+B \right)\det \left( A \right)-\det \left( I+B \right)\det \left( A \right) \\
& \Rightarrow \det \left( A \right)\det \left( B \right)-\det \left( I+B \right)\det \left( A \right)=0 \\
\end{align}\]
Taking $\det \left( A \right)$ common, we get
$\Rightarrow \det \left( A \right)\left[ \det \left( B \right)-\det \left( I+B \right) \right]=0$
Now, since the matrix A is non-singular, $\det \left( A \right)\ne 0$. Therefore, we can divide the above equation by $\det \left( A \right)$ to get
\[\begin{align}
& \Rightarrow \dfrac{\det \left( A \right)\left[ \det \left( B \right)-\det \left( I+B \right) \right]}{\det \left( A \right)}=\dfrac{0}{\det \left( A \right)} \\
& \Rightarrow \det \left( B \right)-\det \left( I+B \right)=0 \\
\end{align}\]
Adding \[\det \left( I+B \right)\] on both sides we get
\[\begin{align}
& \Rightarrow \det \left( B \right)-\det \left( I+B \right)+\det \left( I+B \right)=0+\det \left( I+B \right) \\
& \Rightarrow \det \left( B \right)=\det \left( I+B \right) \\
& \Rightarrow \det \left( B \right)=\det \left( B+I \right).......\left( ii \right) \\
\end{align}\]
Now, we subtract A from both the sides of the equation (i) to get
$\begin{align}
& \Rightarrow AB-BA-A=A-A \\
& \Rightarrow AB-BA-A=0 \\
\end{align}$
Now, we add $BA$ on both the sides of the above equation to write
$\begin{align}
& \Rightarrow AB-BA-A+BA=0+BA \\
& \Rightarrow AB-A=BA \\
\end{align}$
Writing \[A=AI\] in the LHS of the above equation we get
\[\Rightarrow AB-AI=BA\]
Taking A common on the LHS, we get
\[\Rightarrow A\left( B-I \right)=BA\]
Taking determinant on both the sides, we get
$\Rightarrow \det \left( A \right)\det \left( B-I \right)=\det \left( B \right)\det \left( A \right)$
Subtracting $\det \left( B \right)\det \left( A \right)$ from both the sides, we get
\[\begin{align}
& \Rightarrow \det \left( A \right)\det \left( B-I \right)-\det \left( B \right)\det \left( A \right)=\det \left( B \right)\det \left( A \right)-\det \left( B \right)\det \left( A \right) \\
& \Rightarrow \det \left( A \right)\det \left( B-I \right)-\det \left( B \right)\det \left( A \right)=0 \\
\end{align}\]
Taking \[\det \left( A \right)\] common, we get
\[\Rightarrow \det \left( A \right)\left[ \det \left( B-I \right)-\det \left( B \right) \right]=0\]
Dividing the above equation by $\det \left( A \right)$ we get
\[\Rightarrow \det \left( B-I \right)-\det \left( B \right)=0\]
Adding \[\det \left( B \right)\] both sides, we get
\[\begin{align}
& \Rightarrow \det \left( B-I \right)-\det \left( B \right)+\det \left( B \right)=0+\det \left( B \right) \\
& \Rightarrow \det \left( B-I \right)=\det \left( B \right)......\left( iii \right) \\
\end{align}\]
Finally, form the equations (ii) and (iii) we can write
\[\Rightarrow \det \left( B+I \right)=\det \left( B+I \right)\]
So, the correct answer is “Option (a)”.
Note: We must note that we cannot treat matrix equations just like the algebraic equations, even if they appear to be alike. This is because the matrix multiplication does not obey the commutative law, which is valid in case of the algebraic multiplication.
Complete step-by-step answer:
The matrix equation given in the above question is
$\Rightarrow AB-BA=A.......\left( i \right)$
Let us add $BA$ on both the sides of the above equation to get
\[\begin{align}
& \Rightarrow AB-BA+BA=A+BA \\
& \Rightarrow AB=A+BA \\
\end{align}\]
Writing \[A=IA\] in the RHS of the above equation, we get
\[\Rightarrow AB=IA+BA\]
Taking $A$ common on the RHS, we get
\[\Rightarrow AB=\left( I+B \right)A\]
Now, let us take the determinant on both the sides of the above equation to get
\[\Rightarrow \det \left( AB \right)=\det \left[ \left( I+B \right)A \right]\]
From the properties of determinant of a matrix, we know that the determinant of the product of matrices is equal to the product of the determinant of the individual matrices. Therefore, we can write the above equation as
\[\Rightarrow \det \left( A \right)\det \left( B \right)=\det \left( I+B \right)\det \left( A \right)\]
Subtracting \[\det \left( I+B \right)\det \left( A \right)\] from both the sides, we get
\[\begin{align}
& \Rightarrow \det \left( A \right)\det \left( B \right)-\det \left( I+B \right)\det \left( A \right)=\det \left( I+B \right)\det \left( A \right)-\det \left( I+B \right)\det \left( A \right) \\
& \Rightarrow \det \left( A \right)\det \left( B \right)-\det \left( I+B \right)\det \left( A \right)=0 \\
\end{align}\]
Taking $\det \left( A \right)$ common, we get
$\Rightarrow \det \left( A \right)\left[ \det \left( B \right)-\det \left( I+B \right) \right]=0$
Now, since the matrix A is non-singular, $\det \left( A \right)\ne 0$. Therefore, we can divide the above equation by $\det \left( A \right)$ to get
\[\begin{align}
& \Rightarrow \dfrac{\det \left( A \right)\left[ \det \left( B \right)-\det \left( I+B \right) \right]}{\det \left( A \right)}=\dfrac{0}{\det \left( A \right)} \\
& \Rightarrow \det \left( B \right)-\det \left( I+B \right)=0 \\
\end{align}\]
Adding \[\det \left( I+B \right)\] on both sides we get
\[\begin{align}
& \Rightarrow \det \left( B \right)-\det \left( I+B \right)+\det \left( I+B \right)=0+\det \left( I+B \right) \\
& \Rightarrow \det \left( B \right)=\det \left( I+B \right) \\
& \Rightarrow \det \left( B \right)=\det \left( B+I \right).......\left( ii \right) \\
\end{align}\]
Now, we subtract A from both the sides of the equation (i) to get
$\begin{align}
& \Rightarrow AB-BA-A=A-A \\
& \Rightarrow AB-BA-A=0 \\
\end{align}$
Now, we add $BA$ on both the sides of the above equation to write
$\begin{align}
& \Rightarrow AB-BA-A+BA=0+BA \\
& \Rightarrow AB-A=BA \\
\end{align}$
Writing \[A=AI\] in the LHS of the above equation we get
\[\Rightarrow AB-AI=BA\]
Taking A common on the LHS, we get
\[\Rightarrow A\left( B-I \right)=BA\]
Taking determinant on both the sides, we get
$\Rightarrow \det \left( A \right)\det \left( B-I \right)=\det \left( B \right)\det \left( A \right)$
Subtracting $\det \left( B \right)\det \left( A \right)$ from both the sides, we get
\[\begin{align}
& \Rightarrow \det \left( A \right)\det \left( B-I \right)-\det \left( B \right)\det \left( A \right)=\det \left( B \right)\det \left( A \right)-\det \left( B \right)\det \left( A \right) \\
& \Rightarrow \det \left( A \right)\det \left( B-I \right)-\det \left( B \right)\det \left( A \right)=0 \\
\end{align}\]
Taking \[\det \left( A \right)\] common, we get
\[\Rightarrow \det \left( A \right)\left[ \det \left( B-I \right)-\det \left( B \right) \right]=0\]
Dividing the above equation by $\det \left( A \right)$ we get
\[\Rightarrow \det \left( B-I \right)-\det \left( B \right)=0\]
Adding \[\det \left( B \right)\] both sides, we get
\[\begin{align}
& \Rightarrow \det \left( B-I \right)-\det \left( B \right)+\det \left( B \right)=0+\det \left( B \right) \\
& \Rightarrow \det \left( B-I \right)=\det \left( B \right)......\left( iii \right) \\
\end{align}\]
Finally, form the equations (ii) and (iii) we can write
\[\Rightarrow \det \left( B+I \right)=\det \left( B+I \right)\]
So, the correct answer is “Option (a)”.
Note: We must note that we cannot treat matrix equations just like the algebraic equations, even if they appear to be alike. This is because the matrix multiplication does not obey the commutative law, which is valid in case of the algebraic multiplication.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

