
If A is a \[3\times 3\] and det adj(A)=k, then det(adj2A)=?
A. 2k
B. 8k
C. 16k
D. \[64{{k}^{2}}\]
Answer
602.7k+ views
Hint:Take the general expression, A.adjA \[=\left| A \right|I\]. Take their determinate and prove that \[k={{\left| A \right|}^{2}}\]. Thus find det(adj2A) by putting 2A in the general expression and thus find the value of det(adj2A).
Complete step-by-step answer:
We have been given a matrix A which is a \[3\times 3\] matrix. Thus we can say that n = 3.
We have been given that A.adjA \[=\left| A \right|I\], which is a formula for A inverse, \[{{A}^{-1}}\].
Thus A inverse can also be written as \[{{A}^{-1}}=\dfrac{adjA}{\left| A \right|}\].
\[\therefore \left| A.adjA \right|=\left| \left| A \right|.I \right|........(1)\]
Thus we can write the above expression as,
\[\left| A \right|.\left| adjA \right|=\left| \left| A \right|.I \right|\]
\[\left| A \right|=\lambda \] is a constant value.
We know that \[I\]is a unit matrix. Thus \[I\] for a \[3\times 3\] matrix is,
\[I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
Thus if multiplying a constant
\[\lambda .I=\lambda \left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda \\
\end{matrix} \right)\]
Thus taking the determinant of \[\left( \begin{matrix}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda \\
\end{matrix} \right)\] we get is as,
\[\lambda \left( {{\lambda }^{2}}-0 \right)-0\left( 0-0 \right)+0\left[ 0-0 \right]=\lambda .{{\lambda }^{2}}={{\lambda }^{3}}\]
Thus we got the determinate as \[{{\lambda }^{3}}\]. Thus it becomes \[{{\left| A \right|}^{3}}\].
\[\therefore \left| A \right|.\left| adjA \right|={{\left| A \right|}^{3}}\]
Cancel out \[\left| A \right|\] on both the sides.
\[\therefore \left| adjA \right|={{\left| A \right|}^{2}}\]
We have been given det(adjA) = k,
i.e. \[\left| adjA \right|=k\].
\[\Rightarrow k={{\left| A \right|}^{2}}.....(2)\]
Thus we need to find the value of det(adj2A), i.e. \[\left| adj2A \right|\].
Let us put 2A in the place of A in equation (1).
\[\begin{align}
& A.adjA=\left| A \right|.I \\
& \Rightarrow 2A.adj(2A)=\left| 2A \right|.I \\
\end{align}\]
Let us consider matrix A \[=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\]
Now let us multiply \[\lambda \] to the matrix A and we get,
\[\lambda A=\left( \begin{matrix}
\lambda {{a}_{11}} & \lambda {{a}_{12}} & \lambda {{a}_{13}} \\
\lambda {{a}_{21}} & \lambda {{a}_{22}} & \lambda {{a}_{23}} \\
\lambda {{a}_{31}} & \lambda {{a}_{32}} & \lambda {{a}_{33}} \\
\end{matrix} \right)\]
Thus taking the determinant, we get, \[{{2}^{3}}\left| A \right|\], i.e. \[{{\left| 2A \right|}^{3}}\].
\[\therefore 2A.adj(2A)={{2}^{3}}\left| A \right|.I\]
Thus taking determinant on both sides,
\[\begin{align}
& \left| (2A)adj(2A) \right|=\left| {{2}^{3}}\left| A \right|.I \right| \\
& \left| 2A \right|\left| adj2A \right|={{\left( {{2}^{3}}\left| A \right| \right)}^{3}} \\
& {{2}^{3}}\left| A \right|\left| adj2A \right|={{\left( {{2}^{3}} \right)}^{3}}{{\left| A \right|}^{3}} \\
& {{2}^{3}}\left| A \right|\left| adj2A \right|={{2}^{9}}{{\left| A \right|}^{3}} \\
\end{align}\]
We got that \[{{\left| A \right|}^{2}}=k\].
Cancel out \[\left| A \right|\] on both sides of the expression,
\[\begin{align}
& {{2}^{3}}\left| adj2A \right|={{2}^{9}}k \\
& \left| adj2A \right|=\dfrac{{{2}^{9}}}{{{2}^{3}}}k={{2}^{9-3}}k={{2}^{6}}k \\
& \left| adj2A \right|={{2}^{6}}k \\
& \therefore \left| adj2A \right|=64k \\
\end{align}\]
Thus we got det(adj2A) = 64 k.
Option D is the right answer.
Note:We have said that \[\left| A \right|\] is a constant. Thus for any condition, \[\left| kA \right|={{k}^{n}}\left| A \right|\], where n is order of A. Remember the formula of the inverse of a matrix using adjoint, which we have used here to find the value of det(adj2A).
Complete step-by-step answer:
We have been given a matrix A which is a \[3\times 3\] matrix. Thus we can say that n = 3.
We have been given that A.adjA \[=\left| A \right|I\], which is a formula for A inverse, \[{{A}^{-1}}\].
Thus A inverse can also be written as \[{{A}^{-1}}=\dfrac{adjA}{\left| A \right|}\].
\[\therefore \left| A.adjA \right|=\left| \left| A \right|.I \right|........(1)\]
Thus we can write the above expression as,
\[\left| A \right|.\left| adjA \right|=\left| \left| A \right|.I \right|\]
\[\left| A \right|=\lambda \] is a constant value.
We know that \[I\]is a unit matrix. Thus \[I\] for a \[3\times 3\] matrix is,
\[I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
Thus if multiplying a constant
\[\lambda .I=\lambda \left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda \\
\end{matrix} \right)\]
Thus taking the determinant of \[\left( \begin{matrix}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda \\
\end{matrix} \right)\] we get is as,
\[\lambda \left( {{\lambda }^{2}}-0 \right)-0\left( 0-0 \right)+0\left[ 0-0 \right]=\lambda .{{\lambda }^{2}}={{\lambda }^{3}}\]
Thus we got the determinate as \[{{\lambda }^{3}}\]. Thus it becomes \[{{\left| A \right|}^{3}}\].
\[\therefore \left| A \right|.\left| adjA \right|={{\left| A \right|}^{3}}\]
Cancel out \[\left| A \right|\] on both the sides.
\[\therefore \left| adjA \right|={{\left| A \right|}^{2}}\]
We have been given det(adjA) = k,
i.e. \[\left| adjA \right|=k\].
\[\Rightarrow k={{\left| A \right|}^{2}}.....(2)\]
Thus we need to find the value of det(adj2A), i.e. \[\left| adj2A \right|\].
Let us put 2A in the place of A in equation (1).
\[\begin{align}
& A.adjA=\left| A \right|.I \\
& \Rightarrow 2A.adj(2A)=\left| 2A \right|.I \\
\end{align}\]
Let us consider matrix A \[=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\]
Now let us multiply \[\lambda \] to the matrix A and we get,
\[\lambda A=\left( \begin{matrix}
\lambda {{a}_{11}} & \lambda {{a}_{12}} & \lambda {{a}_{13}} \\
\lambda {{a}_{21}} & \lambda {{a}_{22}} & \lambda {{a}_{23}} \\
\lambda {{a}_{31}} & \lambda {{a}_{32}} & \lambda {{a}_{33}} \\
\end{matrix} \right)\]
Thus taking the determinant, we get, \[{{2}^{3}}\left| A \right|\], i.e. \[{{\left| 2A \right|}^{3}}\].
\[\therefore 2A.adj(2A)={{2}^{3}}\left| A \right|.I\]
Thus taking determinant on both sides,
\[\begin{align}
& \left| (2A)adj(2A) \right|=\left| {{2}^{3}}\left| A \right|.I \right| \\
& \left| 2A \right|\left| adj2A \right|={{\left( {{2}^{3}}\left| A \right| \right)}^{3}} \\
& {{2}^{3}}\left| A \right|\left| adj2A \right|={{\left( {{2}^{3}} \right)}^{3}}{{\left| A \right|}^{3}} \\
& {{2}^{3}}\left| A \right|\left| adj2A \right|={{2}^{9}}{{\left| A \right|}^{3}} \\
\end{align}\]
We got that \[{{\left| A \right|}^{2}}=k\].
Cancel out \[\left| A \right|\] on both sides of the expression,
\[\begin{align}
& {{2}^{3}}\left| adj2A \right|={{2}^{9}}k \\
& \left| adj2A \right|=\dfrac{{{2}^{9}}}{{{2}^{3}}}k={{2}^{9-3}}k={{2}^{6}}k \\
& \left| adj2A \right|={{2}^{6}}k \\
& \therefore \left| adj2A \right|=64k \\
\end{align}\]
Thus we got det(adj2A) = 64 k.
Option D is the right answer.
Note:We have said that \[\left| A \right|\] is a constant. Thus for any condition, \[\left| kA \right|={{k}^{n}}\left| A \right|\], where n is order of A. Remember the formula of the inverse of a matrix using adjoint, which we have used here to find the value of det(adj2A).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

