
If \[A\] is a \[3 \times 3\] matrix and \[{\text{det}}\left( {3A} \right) = k\left\{ {\det \left( A \right)} \right\}\], then the value of \[k = \]
A. Nine
B. Six
C. One
D. Twenty-seven
Answer
594k+ views
Hint: In this question, we will use one of the properties of the determinants i.e., \[\det \left( {qA} \right) = {q^n}\det \left( A \right)\] where \[n\] is the order of the square matrix. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[A\] is a matrix of order \[3 \times 3\]. So, it is a square matrix.
We know that \[\det \left( {qA} \right) = {q^n}\det \left( A \right)\], where \[n\] is the order of the matrix \[A\].
So, here the order of the matrix \[A\] is 3 i.e., \[n = 3\].
Now, consider the value of \[\det \left( {3A} \right)\] by using the formula
\[
\Rightarrow \det \left( {3A} \right) = {3^n}\left\{ {\det \left( A \right)} \right\} \\
\Rightarrow \det \left( {3A} \right) = {3^3}\left\{ {\det \left( A \right)} \right\}{\text{ }}\left[ {\because n = 3} \right] \\
\therefore \det \left( {3A} \right) = 27\left\{ {\det \left( A \right)} \right\} \\
\]
But given that \[{\text{det}}\left( {3A} \right) = k\left\{ {\det \left( A \right)} \right\}\]
By comparing the above two values, we have \[k = 27\].
Thus, the correct option is D. Twenty-seven
Note: To check whether the formula we used correct or not, let us consider an example with \[A = {\left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right]_{2 \times 2}}\]and consider the value of \[\det \left( {2A} \right)\].
First let us find \[2A = 2 \times \left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&4 \\
6&8
\end{array}} \right]\]
Now \[\det \left( {2A} \right) = \left| {\begin{array}{*{20}{c}}
2&4 \\
6&8
\end{array}} \right| = \left\{ {\left( 2 \right)\left( 8 \right) - \left( 4 \right)\left( 6 \right)} \right\} = \left( {16 - 24} \right) = - 8\]
And \[\det \left( A \right) = \left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right| = \left\{ {\left( 1 \right)\left( 4 \right) - \left( 2 \right)\left( 3 \right)} \right\} = 4 - 6 = - 2\]
We have used the formula \[\det \left( {qA} \right) = {q^n}\det \left( A \right)\]. Let us check for this by substituting the value of \[n = 2\] and \[q = 2\].
\[
\Rightarrow \det \left( {2A} \right) = {2^2}\det \left( A \right) \\
\Rightarrow \det \left( {2A} \right) = 4\left( { - 2} \right) \\
\therefore \det \left( {2A} \right) = - 8 \\
\]
Since, both the values are equal, the formula we have used is correct.
Complete step-by-step answer:
Given \[A\] is a matrix of order \[3 \times 3\]. So, it is a square matrix.
We know that \[\det \left( {qA} \right) = {q^n}\det \left( A \right)\], where \[n\] is the order of the matrix \[A\].
So, here the order of the matrix \[A\] is 3 i.e., \[n = 3\].
Now, consider the value of \[\det \left( {3A} \right)\] by using the formula
\[
\Rightarrow \det \left( {3A} \right) = {3^n}\left\{ {\det \left( A \right)} \right\} \\
\Rightarrow \det \left( {3A} \right) = {3^3}\left\{ {\det \left( A \right)} \right\}{\text{ }}\left[ {\because n = 3} \right] \\
\therefore \det \left( {3A} \right) = 27\left\{ {\det \left( A \right)} \right\} \\
\]
But given that \[{\text{det}}\left( {3A} \right) = k\left\{ {\det \left( A \right)} \right\}\]
By comparing the above two values, we have \[k = 27\].
Thus, the correct option is D. Twenty-seven
Note: To check whether the formula we used correct or not, let us consider an example with \[A = {\left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right]_{2 \times 2}}\]and consider the value of \[\det \left( {2A} \right)\].
First let us find \[2A = 2 \times \left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&4 \\
6&8
\end{array}} \right]\]
Now \[\det \left( {2A} \right) = \left| {\begin{array}{*{20}{c}}
2&4 \\
6&8
\end{array}} \right| = \left\{ {\left( 2 \right)\left( 8 \right) - \left( 4 \right)\left( 6 \right)} \right\} = \left( {16 - 24} \right) = - 8\]
And \[\det \left( A \right) = \left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right| = \left\{ {\left( 1 \right)\left( 4 \right) - \left( 2 \right)\left( 3 \right)} \right\} = 4 - 6 = - 2\]
We have used the formula \[\det \left( {qA} \right) = {q^n}\det \left( A \right)\]. Let us check for this by substituting the value of \[n = 2\] and \[q = 2\].
\[
\Rightarrow \det \left( {2A} \right) = {2^2}\det \left( A \right) \\
\Rightarrow \det \left( {2A} \right) = 4\left( { - 2} \right) \\
\therefore \det \left( {2A} \right) = - 8 \\
\]
Since, both the values are equal, the formula we have used is correct.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

