
If a function is given as \[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] , show that \[{{\left( {{x}^{2}}+1 \right)}^{2}}{{y}_{2}}+2x\left( {{x}^{2}}+1 \right){{y}_{1}}=2\] .
Answer
604.8k+ views
Hint: In this question \[{{y}_{1}}\] and \[{{y}_{2}}\] represents first order differentiation and second order differentiation. Differentiate the equation \[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] with respect to x using formulas \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] . We know the formula, \[\dfrac{d(uv)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] .Now, again differentiate the equation \[{{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right)\] and then solve further.
Complete step-by-step answer:
According to the equation, we have,
\[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] ……………..(1)
We have to prove, \[{{\left( {{x}^{2}}+1 \right)}^{2}}{{y}_{2}}+2x\left( {{x}^{2}}+1 \right){{y}_{1}}=2\] .
Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] represents first order differentiation and second order differentiation.
That is, \[{{y}_{1}}=\dfrac{dy}{dx}\] ………………………(2)
\[{{y}_{2}}=\dfrac{d{{y}_{2}}}{dx}\] ………………….(3)
Now, using chain rule, differentiating equation (1) with respect to x, we get
\[\begin{align}
& y={{\left( {{\tan }^{-1}}x \right)}^{2}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{dx} \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\] ………………..(4)
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] . Using these two formulas in equation (4), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\]
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=2{{\left( {{\tan }^{-1}}x \right)}^{2-1}}\times \dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow \dfrac{dy}{dx}=2\left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} \\
\end{align}\]
Using equation (1), we can write the above equation as
\[\Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right)\] ………………………….(5)
We know the formula, \[\dfrac{d(uv)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] .
Using this formula and differentiating equation (5), we get
\[\begin{align}
& \Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right) \\
& \Rightarrow \dfrac{d{{y}_{1}}}{dx}\left( 1+{{x}^{2}} \right)+{{y}_{1}}\dfrac{d\left( 1+{{x}^{2}} \right)}{dx}=2\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} \\
\end{align}\]
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] , \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] and equation (3), we get
\[\begin{align}
& \Rightarrow {{y}_{2}}\left( 1+{{x}^{2}} \right)+{{y}_{1}}(2x)=2\dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow {{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}=2 \\
\end{align}\]
So, LHS = RHS.
Hence, proved.
Note: In this question, one might get confused because there is no any information given for
\[{{y}_{1}}\] and \[{{y}_{2}}\] . Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] are the first order differentiation and second order differentiation respectively. We can also solve this question by just putting the values of \[{{y}_{1}}\] and \[{{y}_{2}}\] in the equation \[{{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}\] .
Complete step-by-step answer:
According to the equation, we have,
\[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] ……………..(1)
We have to prove, \[{{\left( {{x}^{2}}+1 \right)}^{2}}{{y}_{2}}+2x\left( {{x}^{2}}+1 \right){{y}_{1}}=2\] .
Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] represents first order differentiation and second order differentiation.
That is, \[{{y}_{1}}=\dfrac{dy}{dx}\] ………………………(2)
\[{{y}_{2}}=\dfrac{d{{y}_{2}}}{dx}\] ………………….(3)
Now, using chain rule, differentiating equation (1) with respect to x, we get
\[\begin{align}
& y={{\left( {{\tan }^{-1}}x \right)}^{2}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{dx} \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\] ………………..(4)
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] . Using these two formulas in equation (4), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\]
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=2{{\left( {{\tan }^{-1}}x \right)}^{2-1}}\times \dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow \dfrac{dy}{dx}=2\left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} \\
\end{align}\]
Using equation (1), we can write the above equation as
\[\Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right)\] ………………………….(5)
We know the formula, \[\dfrac{d(uv)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] .
Using this formula and differentiating equation (5), we get
\[\begin{align}
& \Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right) \\
& \Rightarrow \dfrac{d{{y}_{1}}}{dx}\left( 1+{{x}^{2}} \right)+{{y}_{1}}\dfrac{d\left( 1+{{x}^{2}} \right)}{dx}=2\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} \\
\end{align}\]
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] , \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] and equation (3), we get
\[\begin{align}
& \Rightarrow {{y}_{2}}\left( 1+{{x}^{2}} \right)+{{y}_{1}}(2x)=2\dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow {{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}=2 \\
\end{align}\]
So, LHS = RHS.
Hence, proved.
Note: In this question, one might get confused because there is no any information given for
\[{{y}_{1}}\] and \[{{y}_{2}}\] . Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] are the first order differentiation and second order differentiation respectively. We can also solve this question by just putting the values of \[{{y}_{1}}\] and \[{{y}_{2}}\] in the equation \[{{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}\] .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

