
If a function is given as \[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] , show that \[{{\left( {{x}^{2}}+1 \right)}^{2}}{{y}_{2}}+2x\left( {{x}^{2}}+1 \right){{y}_{1}}=2\] .
Answer
507.6k+ views
Hint: In this question \[{{y}_{1}}\] and \[{{y}_{2}}\] represents first order differentiation and second order differentiation. Differentiate the equation \[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] with respect to x using formulas \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] . We know the formula, \[\dfrac{d(uv)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] .Now, again differentiate the equation \[{{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right)\] and then solve further.
Complete step-by-step answer:
According to the equation, we have,
\[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] ……………..(1)
We have to prove, \[{{\left( {{x}^{2}}+1 \right)}^{2}}{{y}_{2}}+2x\left( {{x}^{2}}+1 \right){{y}_{1}}=2\] .
Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] represents first order differentiation and second order differentiation.
That is, \[{{y}_{1}}=\dfrac{dy}{dx}\] ………………………(2)
\[{{y}_{2}}=\dfrac{d{{y}_{2}}}{dx}\] ………………….(3)
Now, using chain rule, differentiating equation (1) with respect to x, we get
\[\begin{align}
& y={{\left( {{\tan }^{-1}}x \right)}^{2}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{dx} \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\] ………………..(4)
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] . Using these two formulas in equation (4), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\]
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=2{{\left( {{\tan }^{-1}}x \right)}^{2-1}}\times \dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow \dfrac{dy}{dx}=2\left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} \\
\end{align}\]
Using equation (1), we can write the above equation as
\[\Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right)\] ………………………….(5)
We know the formula, \[\dfrac{d(uv)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] .
Using this formula and differentiating equation (5), we get
\[\begin{align}
& \Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right) \\
& \Rightarrow \dfrac{d{{y}_{1}}}{dx}\left( 1+{{x}^{2}} \right)+{{y}_{1}}\dfrac{d\left( 1+{{x}^{2}} \right)}{dx}=2\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} \\
\end{align}\]
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] , \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] and equation (3), we get
\[\begin{align}
& \Rightarrow {{y}_{2}}\left( 1+{{x}^{2}} \right)+{{y}_{1}}(2x)=2\dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow {{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}=2 \\
\end{align}\]
So, LHS = RHS.
Hence, proved.
Note: In this question, one might get confused because there is no any information given for
\[{{y}_{1}}\] and \[{{y}_{2}}\] . Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] are the first order differentiation and second order differentiation respectively. We can also solve this question by just putting the values of \[{{y}_{1}}\] and \[{{y}_{2}}\] in the equation \[{{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}\] .
Complete step-by-step answer:
According to the equation, we have,
\[y={{\left( {{\tan }^{-1}}x \right)}^{2}}\] ……………..(1)
We have to prove, \[{{\left( {{x}^{2}}+1 \right)}^{2}}{{y}_{2}}+2x\left( {{x}^{2}}+1 \right){{y}_{1}}=2\] .
Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] represents first order differentiation and second order differentiation.
That is, \[{{y}_{1}}=\dfrac{dy}{dx}\] ………………………(2)
\[{{y}_{2}}=\dfrac{d{{y}_{2}}}{dx}\] ………………….(3)
Now, using chain rule, differentiating equation (1) with respect to x, we get
\[\begin{align}
& y={{\left( {{\tan }^{-1}}x \right)}^{2}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{dx} \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\] ………………..(4)
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] . Using these two formulas in equation (4), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d{{\left( {{\tan }^{-1}}x \right)}^{2}}}{d({{\tan }^{-1}}x)}\times \dfrac{d({{\tan }^{-1}}x)}{dx}\]
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=2{{\left( {{\tan }^{-1}}x \right)}^{2-1}}\times \dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow \dfrac{dy}{dx}=2\left( {{\tan }^{-1}}x \right)\times \dfrac{1}{1+{{x}^{2}}} \\
\end{align}\]
Using equation (1), we can write the above equation as
\[\Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right)\] ………………………….(5)
We know the formula, \[\dfrac{d(uv)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] .
Using this formula and differentiating equation (5), we get
\[\begin{align}
& \Rightarrow {{y}_{1}}\left( 1+{{x}^{2}} \right)=2\left( {{\tan }^{-1}}x \right) \\
& \Rightarrow \dfrac{d{{y}_{1}}}{dx}\left( 1+{{x}^{2}} \right)+{{y}_{1}}\dfrac{d\left( 1+{{x}^{2}} \right)}{dx}=2\dfrac{d\left( {{\tan }^{-1}}x \right)}{dx} \\
\end{align}\]
We know the formula, \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\] , \[\dfrac{d(ta{{n}^{-1}}x)}{dx}=\dfrac{1}{1+{{x}^{2}}}\] and equation (3), we get
\[\begin{align}
& \Rightarrow {{y}_{2}}\left( 1+{{x}^{2}} \right)+{{y}_{1}}(2x)=2\dfrac{1}{1+{{x}^{2}}} \\
& \Rightarrow {{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}=2 \\
\end{align}\]
So, LHS = RHS.
Hence, proved.
Note: In this question, one might get confused because there is no any information given for
\[{{y}_{1}}\] and \[{{y}_{2}}\] . Here, \[{{y}_{1}}\] and \[{{y}_{2}}\] are the first order differentiation and second order differentiation respectively. We can also solve this question by just putting the values of \[{{y}_{1}}\] and \[{{y}_{2}}\] in the equation \[{{y}_{2}}{{\left( 1+{{x}^{2}} \right)}^{2}}+2x\left( 1+{{x}^{2}} \right){{y}_{1}}\] .
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
