
If a determinant is given as $\Delta (x) = \left| {\begin{array}{*{20}{c}}
1&{\cos x}&{1 - \cos x} \\
{1 + \sin x}&{\cos x}&{1 + \sin x - \cos x} \\
{\sin x}&{\sin x}&1
\end{array}} \right|$ then $\int_0^{\pi /4} {\Delta (x)dx} $ is equal to
(A). $\dfrac{1}{4}$
(B). $\dfrac{1}{2}$
(C). $0$
(D). $ - \dfrac{1}{4}$
Answer
607.8k+ views
Hint- In this question, firstly we have to find the value of the given determinant. Simplify the determinant by applying column operations and solve the determinant and then apply the formula for definite Integration of trigonometric functions to get the answer.
Complete step-by-step solution -
Given, $\Delta (x) = \left| {\begin{array}{*{20}{c}}
1&{\cos x}&{1 - \cos x} \\
{1 + \sin x}&{\cos x}&{1 + \sin x - \cos x} \\
{\sin x}&{\sin x}&1
\end{array}} \right|$
Use column operation ${C_1} \to {C_1} - {C_2}$
$ \Rightarrow \Delta (x) = \left| {\begin{array}{*{20}{c}}
{1 - \cos x}&{\cos x}&{1 - \cos x} \\
{1 + \sin x - \cos x}&{\cos x}&{1 + \sin x - \cos x} \\
0&{\sin x}&1
\end{array}} \right|$
Now, use column operation ${C_1} \to {C_1} - {C_3}$
$ \Rightarrow \Delta (x) = \left| {\begin{array}{*{20}{c}}
0&{\cos x}&{1 - \cos x} \\
0&{\cos x}&{1 + \sin x - \cos x} \\
{ - 1}&{\sin x}&1
\end{array}} \right|$
Now solving the determinant with respect to the column 1 we get,
$ \Rightarrow \Delta (x) = 0 - 0 - 1 \times \left[ {\cos x(1 + \sin x - \cos x) - \cos x(1 - \cos x)} \right]$
$ \Rightarrow \Delta (x) = - 1 \times \left[ {\cos x + \cos x\sin x - {{\cos }^2}x - \cos x + {{\cos }^2}x} \right]$
$ \Rightarrow \Delta (x) = - 1 \times \left[ {\cos x\sin x} \right]$
$ \Rightarrow \Delta (x) = - \cos x\sin x$
$ \Rightarrow \Delta (x) = - \dfrac{{2\cos x\sin x}}{2}$
$ \Rightarrow \Delta (x) = - \dfrac{{\sin 2x}}{2}$
Integrate both sides with respect to x over the definite integral where x varies from 0 to $\dfrac{\pi }{4}$
\[ \Rightarrow \int_0^{\pi /4} {\Delta (x)} = \int_0^{\pi /4} {\dfrac{{ - 1}}{2}\left( {\sin (2x)} \right)dx} \]
\[ = \dfrac{{ - 1}}{2}\int_0^{\pi /4} {\sin (2x)dx} \]
We know that $\int_c^d {\cos (ax)dx = } \left[ {\dfrac{{ - \sin (ax)}}{a}} \right]_c^d = - \dfrac{1}{a}\left[ {\sin (ad) - \sin (ac)} \right]$
\[ = \dfrac{{ - 1}}{2}\left[ { - \dfrac{{\cos 2x}}{2}} \right]_0^{\pi /4}\]
\[ = \dfrac{1}{4}\left[ {\cos 2x} \right]_0^{\pi /4}\]
\[ = \dfrac{1}{4}\left[ {\cos \dfrac{{2\pi }}{4} - \cos 0} \right]\]
We know that $\cos 0 = 1$
\[ = \dfrac{1}{4}\left[ {\cos \dfrac{\pi }{2} - 1} \right]\]
We know that $\cos \dfrac{\pi }{2} = 1$
\[ = \dfrac{1}{4}\left[ {0 - 1} \right]\]
\[ = - \dfrac{1}{4}\]
Hence, $\int_0^{\pi /4} {\Delta (x)dx} = - \dfrac{1}{4}$
$\therefore $ Option D. $ - \dfrac{1}{4}$ is the correct answer.
Note- For these types of questions, one has to remember all the properties of determinant and integration to proceed. It is better to use columns/rows operations for simplification. Moreover, one must be knowing that $\int_c^d {\cos (ax)dx = } \left[ {\dfrac{{ - \sin (ax)}}{a}} \right]_c^d = - \dfrac{1}{a}\left[ {\sin (ad) - \sin (ac)} \right]$ , $\cos 0 = 1$ , $\cos \dfrac{\pi }{2} = 1$ and how to solve the determinant. In these types of questions students start to solve given determinants directly which makes the solution complicated, so this is needed to be careful here.
Complete step-by-step solution -
Given, $\Delta (x) = \left| {\begin{array}{*{20}{c}}
1&{\cos x}&{1 - \cos x} \\
{1 + \sin x}&{\cos x}&{1 + \sin x - \cos x} \\
{\sin x}&{\sin x}&1
\end{array}} \right|$
Use column operation ${C_1} \to {C_1} - {C_2}$
$ \Rightarrow \Delta (x) = \left| {\begin{array}{*{20}{c}}
{1 - \cos x}&{\cos x}&{1 - \cos x} \\
{1 + \sin x - \cos x}&{\cos x}&{1 + \sin x - \cos x} \\
0&{\sin x}&1
\end{array}} \right|$
Now, use column operation ${C_1} \to {C_1} - {C_3}$
$ \Rightarrow \Delta (x) = \left| {\begin{array}{*{20}{c}}
0&{\cos x}&{1 - \cos x} \\
0&{\cos x}&{1 + \sin x - \cos x} \\
{ - 1}&{\sin x}&1
\end{array}} \right|$
Now solving the determinant with respect to the column 1 we get,
$ \Rightarrow \Delta (x) = 0 - 0 - 1 \times \left[ {\cos x(1 + \sin x - \cos x) - \cos x(1 - \cos x)} \right]$
$ \Rightarrow \Delta (x) = - 1 \times \left[ {\cos x + \cos x\sin x - {{\cos }^2}x - \cos x + {{\cos }^2}x} \right]$
$ \Rightarrow \Delta (x) = - 1 \times \left[ {\cos x\sin x} \right]$
$ \Rightarrow \Delta (x) = - \cos x\sin x$
$ \Rightarrow \Delta (x) = - \dfrac{{2\cos x\sin x}}{2}$
$ \Rightarrow \Delta (x) = - \dfrac{{\sin 2x}}{2}$
Integrate both sides with respect to x over the definite integral where x varies from 0 to $\dfrac{\pi }{4}$
\[ \Rightarrow \int_0^{\pi /4} {\Delta (x)} = \int_0^{\pi /4} {\dfrac{{ - 1}}{2}\left( {\sin (2x)} \right)dx} \]
\[ = \dfrac{{ - 1}}{2}\int_0^{\pi /4} {\sin (2x)dx} \]
We know that $\int_c^d {\cos (ax)dx = } \left[ {\dfrac{{ - \sin (ax)}}{a}} \right]_c^d = - \dfrac{1}{a}\left[ {\sin (ad) - \sin (ac)} \right]$
\[ = \dfrac{{ - 1}}{2}\left[ { - \dfrac{{\cos 2x}}{2}} \right]_0^{\pi /4}\]
\[ = \dfrac{1}{4}\left[ {\cos 2x} \right]_0^{\pi /4}\]
\[ = \dfrac{1}{4}\left[ {\cos \dfrac{{2\pi }}{4} - \cos 0} \right]\]
We know that $\cos 0 = 1$
\[ = \dfrac{1}{4}\left[ {\cos \dfrac{\pi }{2} - 1} \right]\]
We know that $\cos \dfrac{\pi }{2} = 1$
\[ = \dfrac{1}{4}\left[ {0 - 1} \right]\]
\[ = - \dfrac{1}{4}\]
Hence, $\int_0^{\pi /4} {\Delta (x)dx} = - \dfrac{1}{4}$
$\therefore $ Option D. $ - \dfrac{1}{4}$ is the correct answer.
Note- For these types of questions, one has to remember all the properties of determinant and integration to proceed. It is better to use columns/rows operations for simplification. Moreover, one must be knowing that $\int_c^d {\cos (ax)dx = } \left[ {\dfrac{{ - \sin (ax)}}{a}} \right]_c^d = - \dfrac{1}{a}\left[ {\sin (ad) - \sin (ac)} \right]$ , $\cos 0 = 1$ , $\cos \dfrac{\pi }{2} = 1$ and how to solve the determinant. In these types of questions students start to solve given determinants directly which makes the solution complicated, so this is needed to be careful here.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

