
If a complex equation is given by \[{{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right)\], then show that \[{{a}^{2}}+{{b}^{2}}=4\].
Answer
508.8k+ views
Hint: In order to solve this question, we should know about a few trigonometric ratios like \[\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2},\sin \dfrac{\pi }{6}=\dfrac{1}{2},\cos \dfrac{2\pi }{3}=\dfrac{-1}{2},\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}\]. Also, we need to remember that \[\left( \cos \theta +i\sin \theta \right)={{e}^{i\theta }}\] and \[\left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\]. By using this, we can prove equality.
Complete step-by-step answer:
In this question, we have been given equality that is \[{{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right)\] and we have been asked to prove that \[{{a}^{2}}+{{b}^{2}}=4\].
So, to solve this question, we should know that \[\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}\text{ and }\sin \dfrac{\pi }{6}=\dfrac{1}{2}\].
So, to prove the equality \[{{a}^{2}}+{{b}^{2}}=4\], we will first consider \[{{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right)\]. So, we will first multiply and divide \[{{\left( \sqrt{3}+i \right)}^{100}}\] by \[{{2}^{100}}\]. So, we get,
\[{{2}^{100}}{{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{100}}={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\dfrac{\sqrt{3}}{2}=\cos \dfrac{\pi }{6}\text{ and }\dfrac{1}{2}=\sin \dfrac{\pi }{6}\].
So, we get,
\[{{2}^{100}}{{\left[ \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right]}^{100}}={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\cos \theta +i\sin \theta ={{e}^{i\theta }}\]. So, we can write \[\cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6}={{e}^{i\dfrac{\pi }{6}}}\]. So, we get,
\[{{2}^{100}}{{\left( {{e}^{i\dfrac{\pi }{6}}} \right)}^{100}}={{2}^{99}}\left( a+ib \right)\]
\[{{2}^{100}}\left( {{e}^{i100\dfrac{\pi }{6}}} \right)={{2}^{99}}\left( a+ib \right)\]
\[{{2}^{100}}\left( {{e}^{i50\dfrac{\pi }{3}}} \right)={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\dfrac{50\pi }{3}\] can be written as \[16\pi +\dfrac{2\pi }{3}\]. So, we get,
\[{{2}^{100}}\left( {{e}^{i\left( 16\pi +\dfrac{2\pi }{3} \right)}} \right)={{2}^{99}}\left( a+ib \right)\]
And we know that \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]. So, we can write \[{{e}^{i\left( 16\pi +\dfrac{2\pi }{3} \right)}}\] as \[\left( {{e}^{i16\pi }}\times {{e}^{i\dfrac{2\pi }{3}}} \right)\]. Therefore, we get,
\[{{2}^{100}}\left( {{e}^{i16\pi }} \right)\left( {{e}^{i\dfrac{2\pi }{3}}} \right)={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \]. So, we can write \[{{e}^{i16\pi }}=\cos 16\pi +i\sin 16\pi ,\text{ }{{e}^{i\dfrac{2\pi }{3}}}=\cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3}\]
Therefore, we get,
\[{{2}^{100}}\left[ \cos 16\pi +i\sin 16\pi \right]\left[ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} \right]={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\cos 2n\pi =1\text{ and }\sin 2n\pi =0\]. We can write \[\cos 16\pi =\cos \left( 2\times 8\pi \right)=1\text{ and }\sin 16\pi =\sin \left( 2\times 8\pi \right)=0\]. Also, we know that \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\text{ and }\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}\]. So, we get,
\[{{2}^{100}}\left( 1+0i \right)\left[ \dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}i \right]={{2}^{99}}\left( a+ib \right)\]
\[{{2}^{100}}\left( \dfrac{-1+\sqrt{3}i}{2} \right)={{2}^{99}}\left( a+ib \right)\]
\[\dfrac{\left( -1+\sqrt{3}i \right)}{1}=\dfrac{{{2}^{99}}\left( a+ib \right)2}{{{2}^{100}}}\]
\[-1+\sqrt{3}i=a+ib\]
On comparing both the sides, we can say a = – 1 and \[b=\sqrt{3}\]. Now, we have to show that \[{{a}^{2}}+{{b}^{2}}=4\]. For that, we will put the value of a and b in \[{{a}^{2}}+{{b}^{2}}=4\], we get,
\[{{\left( -1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}=4\]
\[1+3=4\]
\[4=4\]
LHS = RHS
Hence proved
Note: While solving this question, we need to remember that \[\cos \dfrac{2\pi }{3}\text{ and }\sin \dfrac{2\pi }{3}\] are calculated by the property of \[\cos \left( 180-\theta \right)=-\cos \theta \text{ and }\sin \left( 180-\theta \right)=\sin \theta \] where \[\theta =\dfrac{\pi }{3}\] because \[\dfrac{2\pi }{3}=180-\dfrac{\pi }{3}\] and therefore we get \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\text{ and }\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}\]. Also, we have to remember that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \]. By these concepts, we can solve the question. The important step here is the splitting of the angle \[\dfrac{50\pi }{3}\text{ as }16\pi +\dfrac{2\pi }{3}\]. Whichever angle we get in the power, we must try to represent it as the sum or difference of \[2n\pi \pm \theta \]. This will make it easier to solve this type of question.
Complete step-by-step answer:
In this question, we have been given equality that is \[{{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right)\] and we have been asked to prove that \[{{a}^{2}}+{{b}^{2}}=4\].
So, to solve this question, we should know that \[\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}\text{ and }\sin \dfrac{\pi }{6}=\dfrac{1}{2}\].
So, to prove the equality \[{{a}^{2}}+{{b}^{2}}=4\], we will first consider \[{{\left( \sqrt{3}+i \right)}^{100}}={{2}^{99}}\left( a+ib \right)\]. So, we will first multiply and divide \[{{\left( \sqrt{3}+i \right)}^{100}}\] by \[{{2}^{100}}\]. So, we get,
\[{{2}^{100}}{{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{100}}={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\dfrac{\sqrt{3}}{2}=\cos \dfrac{\pi }{6}\text{ and }\dfrac{1}{2}=\sin \dfrac{\pi }{6}\].
So, we get,
\[{{2}^{100}}{{\left[ \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right]}^{100}}={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\cos \theta +i\sin \theta ={{e}^{i\theta }}\]. So, we can write \[\cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6}={{e}^{i\dfrac{\pi }{6}}}\]. So, we get,
\[{{2}^{100}}{{\left( {{e}^{i\dfrac{\pi }{6}}} \right)}^{100}}={{2}^{99}}\left( a+ib \right)\]
\[{{2}^{100}}\left( {{e}^{i100\dfrac{\pi }{6}}} \right)={{2}^{99}}\left( a+ib \right)\]
\[{{2}^{100}}\left( {{e}^{i50\dfrac{\pi }{3}}} \right)={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\dfrac{50\pi }{3}\] can be written as \[16\pi +\dfrac{2\pi }{3}\]. So, we get,
\[{{2}^{100}}\left( {{e}^{i\left( 16\pi +\dfrac{2\pi }{3} \right)}} \right)={{2}^{99}}\left( a+ib \right)\]
And we know that \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]. So, we can write \[{{e}^{i\left( 16\pi +\dfrac{2\pi }{3} \right)}}\] as \[\left( {{e}^{i16\pi }}\times {{e}^{i\dfrac{2\pi }{3}}} \right)\]. Therefore, we get,
\[{{2}^{100}}\left( {{e}^{i16\pi }} \right)\left( {{e}^{i\dfrac{2\pi }{3}}} \right)={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \]. So, we can write \[{{e}^{i16\pi }}=\cos 16\pi +i\sin 16\pi ,\text{ }{{e}^{i\dfrac{2\pi }{3}}}=\cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3}\]
Therefore, we get,
\[{{2}^{100}}\left[ \cos 16\pi +i\sin 16\pi \right]\left[ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} \right]={{2}^{99}}\left( a+ib \right)\]
Now, we know that \[\cos 2n\pi =1\text{ and }\sin 2n\pi =0\]. We can write \[\cos 16\pi =\cos \left( 2\times 8\pi \right)=1\text{ and }\sin 16\pi =\sin \left( 2\times 8\pi \right)=0\]. Also, we know that \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\text{ and }\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}\]. So, we get,
\[{{2}^{100}}\left( 1+0i \right)\left[ \dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}i \right]={{2}^{99}}\left( a+ib \right)\]
\[{{2}^{100}}\left( \dfrac{-1+\sqrt{3}i}{2} \right)={{2}^{99}}\left( a+ib \right)\]
\[\dfrac{\left( -1+\sqrt{3}i \right)}{1}=\dfrac{{{2}^{99}}\left( a+ib \right)2}{{{2}^{100}}}\]
\[-1+\sqrt{3}i=a+ib\]
On comparing both the sides, we can say a = – 1 and \[b=\sqrt{3}\]. Now, we have to show that \[{{a}^{2}}+{{b}^{2}}=4\]. For that, we will put the value of a and b in \[{{a}^{2}}+{{b}^{2}}=4\], we get,
\[{{\left( -1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}=4\]
\[1+3=4\]
\[4=4\]
LHS = RHS
Hence proved
Note: While solving this question, we need to remember that \[\cos \dfrac{2\pi }{3}\text{ and }\sin \dfrac{2\pi }{3}\] are calculated by the property of \[\cos \left( 180-\theta \right)=-\cos \theta \text{ and }\sin \left( 180-\theta \right)=\sin \theta \] where \[\theta =\dfrac{\pi }{3}\] because \[\dfrac{2\pi }{3}=180-\dfrac{\pi }{3}\] and therefore we get \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\text{ and }\sin \dfrac{2\pi }{3}=\dfrac{\sqrt{3}}{2}\]. Also, we have to remember that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \]. By these concepts, we can solve the question. The important step here is the splitting of the angle \[\dfrac{50\pi }{3}\text{ as }16\pi +\dfrac{2\pi }{3}\]. Whichever angle we get in the power, we must try to represent it as the sum or difference of \[2n\pi \pm \theta \]. This will make it easier to solve this type of question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
