
If a, b, c are non-coplanar vectors and \[\lambda \] is a real number, then \[\left[ \lambda \left( a+b \right){{\lambda }^{2}}b\lambda c \right]=\left[ ab+cb \right]\] for
1) exactly two values of \[\lambda \]
2) exactly three values of \[\lambda \]
3) no real value of \[\lambda \]
4) exactly one value of \[\lambda \]
Answer
411.9k+ views
Hint: In this type of question we have to use the concept of non-coplanar vectors. We know that a finite number of vectors are said to be non-coplanar if they do not lie on the same plane or on the same parallel planes. We know that the scalar triple product of three vectors \[a,b,c\] is denoted as \[\left[ abc \right]=\left( a\times b \right)\cdot c\]. Also by the property of scalar triple product we know that the product is cyclic in nature that is \[\left[ abc \right]=\left[ bca \right]=\left[ cab \right]=-\left[ bac \right]=-\left[ cba \right]=-\left[ acb \right]\].
Complete step-by-step solution:
Now we have to find the value of \[\lambda \] if \[\left[ \lambda \left( a+b \right){{\lambda }^{2}}b\lambda c \right]=\left[ ab+cb \right]\]
Let us consider the L.H.S.
\[\Rightarrow L.H.S.=\left[ \lambda \left( a+b \right){{\lambda }^{2}}b\lambda c \right]\]
As we know that the scalar triple product of three vectors \[a,b,c\] is denoted as \[\left[ abc \right]=\left( a\times b \right)\cdot c\]
\[\Rightarrow L.H.S.=\left( \left( \lambda \left( a+b \right)\times {{\lambda }^{2}}b \right)\cdot \lambda c \right)\]
Now we have given that the \[\lambda \] is a real number
\[\Rightarrow L.H.S.={{\lambda }^{4}}\left( \left( a+b \right)\times b \right)\cdot c\]
\[\Rightarrow L.H.S.={{\lambda }^{4}}\left[ \left( a+b \right)bc \right]\]
We know that \[\left[ \left( a+b \right)bc \right]=\left[ abc \right]\]
\[\Rightarrow L.H.S.={{\lambda }^{4}}\left[ abc \right]\cdots \cdots \cdots \left( i \right)\]
Now, we will simplify the R.H.S.
\[\Rightarrow R.H.S.=\left[ ab+cb \right]\]
\[\Rightarrow R.H.S.=\left[ a\left( b+c \right)b \right]\]
\[\Rightarrow R.H.S.=\left( a\times \left( b+c \right) \right)\cdot b\]
\[\Rightarrow R.H.S.=\left[ acb \right]\]
Now we know that, by the property of scalar triple product the product is cyclic in nature that is \[\left[ abc \right]=\left[ bca \right]=\left[ cab \right]=-\left[ bac \right]=-\left[ cba \right]=-\left[ acb \right]\].
\[\Rightarrow R.H.S.=-\left[ abc \right]\cdots \cdots \cdots \left( ii \right)\]
Now, we have given that,
\[\Rightarrow R.H.S.=L.H.S.\]
Hence, from equation \[\left( i \right)\] and \[\left( ii \right)\] we can write,
\[\begin{align}
& \Rightarrow {{\lambda }^{4}}\left[ abc \right]=-\left[ abc \right] \\
& \Rightarrow {{\lambda }^{4}}=-1 \\
\end{align}\]
Hence, there does not exists any real value of \[\lambda \]
Thus, option (3) is the correct option.
Note:In this type of question students have to be well familiar with the concept as well as properties of the scalar triple product. Also students have to remember the relations such as \[\left[ \left( a+b \right)bc \right]=\left[ abc \right]\], \[\left[ a\left( b+c \right)b \right]=\left[ acb \right]\], etc.
Complete step-by-step solution:
Now we have to find the value of \[\lambda \] if \[\left[ \lambda \left( a+b \right){{\lambda }^{2}}b\lambda c \right]=\left[ ab+cb \right]\]
Let us consider the L.H.S.
\[\Rightarrow L.H.S.=\left[ \lambda \left( a+b \right){{\lambda }^{2}}b\lambda c \right]\]
As we know that the scalar triple product of three vectors \[a,b,c\] is denoted as \[\left[ abc \right]=\left( a\times b \right)\cdot c\]
\[\Rightarrow L.H.S.=\left( \left( \lambda \left( a+b \right)\times {{\lambda }^{2}}b \right)\cdot \lambda c \right)\]
Now we have given that the \[\lambda \] is a real number
\[\Rightarrow L.H.S.={{\lambda }^{4}}\left( \left( a+b \right)\times b \right)\cdot c\]
\[\Rightarrow L.H.S.={{\lambda }^{4}}\left[ \left( a+b \right)bc \right]\]
We know that \[\left[ \left( a+b \right)bc \right]=\left[ abc \right]\]
\[\Rightarrow L.H.S.={{\lambda }^{4}}\left[ abc \right]\cdots \cdots \cdots \left( i \right)\]
Now, we will simplify the R.H.S.
\[\Rightarrow R.H.S.=\left[ ab+cb \right]\]
\[\Rightarrow R.H.S.=\left[ a\left( b+c \right)b \right]\]
\[\Rightarrow R.H.S.=\left( a\times \left( b+c \right) \right)\cdot b\]
\[\Rightarrow R.H.S.=\left[ acb \right]\]
Now we know that, by the property of scalar triple product the product is cyclic in nature that is \[\left[ abc \right]=\left[ bca \right]=\left[ cab \right]=-\left[ bac \right]=-\left[ cba \right]=-\left[ acb \right]\].
\[\Rightarrow R.H.S.=-\left[ abc \right]\cdots \cdots \cdots \left( ii \right)\]
Now, we have given that,
\[\Rightarrow R.H.S.=L.H.S.\]
Hence, from equation \[\left( i \right)\] and \[\left( ii \right)\] we can write,
\[\begin{align}
& \Rightarrow {{\lambda }^{4}}\left[ abc \right]=-\left[ abc \right] \\
& \Rightarrow {{\lambda }^{4}}=-1 \\
\end{align}\]
Hence, there does not exists any real value of \[\lambda \]
Thus, option (3) is the correct option.
Note:In this type of question students have to be well familiar with the concept as well as properties of the scalar triple product. Also students have to remember the relations such as \[\left[ \left( a+b \right)bc \right]=\left[ abc \right]\], \[\left[ a\left( b+c \right)b \right]=\left[ acb \right]\], etc.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
