
If \[a\] , $ b $ , $ c $ are in AP, then $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ are in
1. AP
2. GP
3. HP
4. None of these
Answer
505.2k+ views
Hint: According to the definition of Arithmetic Progression of a series,
Arithmetic Progression is a sequence of terms in which the difference between any two consecutive terms is always the same.
For example, if $ x $ , $ y $ , $ z $ are in AP, then
$ y - x = z - y $
Interchanging the terms we get,
$ \Rightarrow 2y = x + z $
Therefore, if the given sequence is in Arithmetic Progression, then it should satisfy the condition that
$ 2y = x + z $
Complete step-by-step answer:
It is given that $ a $ , $ b $ , $ c $ are in Arithmetic Progression.
We know that if the sequence $ a $ , $ b $ , $ c $ are in AP, then
$ 2b = a + c - - - - - - \left( 1 \right) $
First let us assume that the sequence given $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ is in AP.
Therefore, we have to prove that the terms $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ satisfies the condition that
$ 2\left( {\dfrac{1}{{\sqrt a + \sqrt c }}} \right) = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{1}{{\sqrt b + \sqrt c }} $
Taking L.C.M on the right-hand side we get,
$ \dfrac{2}{{\sqrt a + \sqrt c }} = \dfrac{{\sqrt b + \sqrt c + \sqrt a + \sqrt b }}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt b + \sqrt c } \right)}} $
Multiplying terms in denominator of R.H.S we get,
$ \Rightarrow \dfrac{2}{{\sqrt a + \sqrt c }} = \dfrac{{2\sqrt b + \sqrt c + \sqrt a }}{{\sqrt {ab} + \sqrt {ac} + b + \sqrt {bc} }} $
On cross multiplication, we get
$ 2\sqrt {ab} + 2\sqrt {ac} + 2b + 2\sqrt {bc} = 2\sqrt {ab} + 2\sqrt {bc} + a + c + 2\sqrt {ac} $
On cancelling some terms present on both sides, we get
$ 2b = a + c $
On substituting equation $ \left( 1 \right) $ in above equation, we get
$ a + c = a + c $
Therefore L.H.S is equal to R.H.S.
This satisfies the above condition of arithmetic progression.
Hence, we have proved that the terms given $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ are in Arithmetic Progression.
So, the correct answer is “Option 1”.
Note: If the above condition does not satisfy, then the terms are not in arithmetic progression.
Then we have to know if the terms are in geometric progression or harmonic progression.
If the terms $ a $ , $ b $ , $ c $ are in geometric progression then the terms should satisfy the equation,
$ {b^2} = ac $
If the terms $ a $ , $ b $ , $ c $ are in harmonic progression then the terms should satisfy the equation,
$ b = \dfrac{{2ac}}{{a + c}} $
If the above equation does not satisfy then the answer should be none of these.
Arithmetic Progression is a sequence of terms in which the difference between any two consecutive terms is always the same.
For example, if $ x $ , $ y $ , $ z $ are in AP, then
$ y - x = z - y $
Interchanging the terms we get,
$ \Rightarrow 2y = x + z $
Therefore, if the given sequence is in Arithmetic Progression, then it should satisfy the condition that
$ 2y = x + z $
Complete step-by-step answer:
It is given that $ a $ , $ b $ , $ c $ are in Arithmetic Progression.
We know that if the sequence $ a $ , $ b $ , $ c $ are in AP, then
$ 2b = a + c - - - - - - \left( 1 \right) $
First let us assume that the sequence given $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ is in AP.
Therefore, we have to prove that the terms $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ satisfies the condition that
$ 2\left( {\dfrac{1}{{\sqrt a + \sqrt c }}} \right) = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{1}{{\sqrt b + \sqrt c }} $
Taking L.C.M on the right-hand side we get,
$ \dfrac{2}{{\sqrt a + \sqrt c }} = \dfrac{{\sqrt b + \sqrt c + \sqrt a + \sqrt b }}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt b + \sqrt c } \right)}} $
Multiplying terms in denominator of R.H.S we get,
$ \Rightarrow \dfrac{2}{{\sqrt a + \sqrt c }} = \dfrac{{2\sqrt b + \sqrt c + \sqrt a }}{{\sqrt {ab} + \sqrt {ac} + b + \sqrt {bc} }} $
On cross multiplication, we get
$ 2\sqrt {ab} + 2\sqrt {ac} + 2b + 2\sqrt {bc} = 2\sqrt {ab} + 2\sqrt {bc} + a + c + 2\sqrt {ac} $
On cancelling some terms present on both sides, we get
$ 2b = a + c $
On substituting equation $ \left( 1 \right) $ in above equation, we get
$ a + c = a + c $
Therefore L.H.S is equal to R.H.S.
This satisfies the above condition of arithmetic progression.
Hence, we have proved that the terms given $ \dfrac{1}{{\sqrt a + \sqrt b }} $ , $ \dfrac{1}{{\sqrt a + \sqrt c }} $ , $ \dfrac{1}{{\sqrt b + \sqrt c }} $ are in Arithmetic Progression.
So, the correct answer is “Option 1”.
Note: If the above condition does not satisfy, then the terms are not in arithmetic progression.
Then we have to know if the terms are in geometric progression or harmonic progression.
If the terms $ a $ , $ b $ , $ c $ are in geometric progression then the terms should satisfy the equation,
$ {b^2} = ac $
If the terms $ a $ , $ b $ , $ c $ are in harmonic progression then the terms should satisfy the equation,
$ b = \dfrac{{2ac}}{{a + c}} $
If the above equation does not satisfy then the answer should be none of these.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Give 5 examples of refraction of light in daily life

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE

