
If a, b, c and d are in G.P. show that \[{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {({\rm{ab + bc + cd)}}^2}\]
Answer
580.2k+ views
Hint:
Here in this question, we will compare a, b, c, d with the basic G.P. equation and then substitute their value in the given equation. We will then expand both sides of equation one by one to find proof that the left side of the given equation is equal to the right side.
Complete step by step solution:
As we all know that the basic G.P. equation is \[{\rm{a}},{\rm{ar}},{\rm{a}}{{\rm{r}}^2},{\rm{a}}{{\rm{r}}^3},{\rm{a}}{{\rm{r}}^4},.........\]
Where, a is the first term of the G.P. and r is the common ratio.
Here it is given that a, b, c, d are in G.P.
Therefore, \[{\rm{a}} = {\rm{a}}\]
\[{\rm{b}} = {\rm{ar}}\]
\[{\rm{c}} = {\rm{a}}{{\rm{r}}^2}\]
\[{\rm{d}} = {\rm{a}}{{\rm{r}}^3}\]
Now we need to show that \[{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {({\rm{ab + bc + cd)}}^2}\]
First we will take LHS of the equation and put the values of a, b, c, d in it
After putting the values of a, b, c, d we get
\[\begin{array}{l}{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {\rm{(}}{{\rm{a}}^2} + {({\rm{ar)}}^2} + {({\rm{a}}{{\rm{r}}^2}{\rm{)}}^2})({({\rm{ar}})^2} + {{\rm{(a}}{{\rm{r}}^2}{\rm{)}}^2} + {({\rm{a}}{{\rm{r}}^3})^2})\\{\rm{ = (}}{{\rm{a}}^2} + {{\rm{a}}^2}{{\rm{r}}^2} + {{\rm{a}}^2}{{\rm{r}}^4})({{\rm{a}}^2}{{\rm{r}}^2} + {{\rm{a}}^2}{{\rm{r}}^4} + {{\rm{a}}^2}{{\rm{r}}^6})\end{array}\]
Now by simplification, we get
\[\begin{array}{l}{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {\rm{(}}{{\rm{a}}^2}(1 + {{\rm{r}}^2} + {{\rm{r}}^4}))({{\rm{a}}^2}{{\rm{r}}^2}(1 + {{\rm{r}}^2} + {{\rm{r}}^4}))\\ = {\rm{(}}{{\rm{a}}^2}{\rm{)(}}{{\rm{a}}^2}{{\rm{r}}^2})(1 + {{\rm{r}}^2} + {{\rm{r}}^4})(1 + {{\rm{r}}^2} + {{\rm{r}}^4})\\ = {{\rm{a}}^4}{{\rm{r}}^2}{(1 + {{\rm{r}}^2} + {{\rm{r}}^4})^2}\end{array}\]
Now taking RHS of the equation and putting the values of a, b, c, d in it.
After putting the values of a, b, c, d , we get
\[{({\rm{ab}} + {\rm{bc}} + {\rm{cd)}}^2} = {({\rm{a}} \times {\rm{ar}} + {\rm{ar}} \times {\rm{a}}{{\rm{r}}^2} + {\rm{a}}{{\rm{r}}^2} \times {\rm{a}}{{\rm{r}}^3}{\rm{)}}^2} = {({{\rm{a}}^2}{\rm{r}} + {{\rm{a}}^2}{{\rm{r}}^3} + {{\rm{a}}^2}{{\rm{r}}^5}{\rm{)}}^2}\]
Now by simplification, we get
\[{({\rm{ab}} + {\rm{bc}} + {\rm{cd)}}^2} = {({{\rm{a}}^2}{\rm{r(}}1 + {{\rm{r}}^2} + {{\rm{r}}^4}{\rm{))}}^2} = {{\rm{a}}^4}{{\rm{r}}^2}{(1 + {{\rm{r}}^2} + {{\rm{r}}^4})^2}\]
We can clearly see that Left hand side of the equation is equal to the right hand side.
Hence we proved that \[{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {({\rm{ab + bc + cd)}}^2}\].
Note:
We always have to keep in mind the basic A.P. and G.P series.
A.P. series is \[{\rm{a}},{\rm{a}} + {\rm{d}},{\rm{a}} + 2{\rm{d}},{\rm{a}} + 3{\rm{d,}}............\]
\[{{\rm{n}}^{{\rm{th}}}}{\rm{term }} = {\rm{ a}} + \left( {{\rm{n}} - 1} \right){\rm{d}}\]
Where a is the first term and d is the common difference
G.P. series is \[{\rm{a}},{\rm{ar}},{\rm{a}}{{\rm{r}}^2},{\rm{a}}{{\rm{r}}^3},{\rm{a}}{{\rm{r}}^4},.........\]
\[{{\rm{n}}^{{\rm{th}}}}{\rm{term}} = {\rm{a}}{{\rm{r}}^{{\rm{n}} - 1}}\]
Where, a is the first term of the G.P. and r is the common ratio.
Here in this question, we will compare a, b, c, d with the basic G.P. equation and then substitute their value in the given equation. We will then expand both sides of equation one by one to find proof that the left side of the given equation is equal to the right side.
Complete step by step solution:
As we all know that the basic G.P. equation is \[{\rm{a}},{\rm{ar}},{\rm{a}}{{\rm{r}}^2},{\rm{a}}{{\rm{r}}^3},{\rm{a}}{{\rm{r}}^4},.........\]
Where, a is the first term of the G.P. and r is the common ratio.
Here it is given that a, b, c, d are in G.P.
Therefore, \[{\rm{a}} = {\rm{a}}\]
\[{\rm{b}} = {\rm{ar}}\]
\[{\rm{c}} = {\rm{a}}{{\rm{r}}^2}\]
\[{\rm{d}} = {\rm{a}}{{\rm{r}}^3}\]
Now we need to show that \[{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {({\rm{ab + bc + cd)}}^2}\]
First we will take LHS of the equation and put the values of a, b, c, d in it
After putting the values of a, b, c, d we get
\[\begin{array}{l}{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {\rm{(}}{{\rm{a}}^2} + {({\rm{ar)}}^2} + {({\rm{a}}{{\rm{r}}^2}{\rm{)}}^2})({({\rm{ar}})^2} + {{\rm{(a}}{{\rm{r}}^2}{\rm{)}}^2} + {({\rm{a}}{{\rm{r}}^3})^2})\\{\rm{ = (}}{{\rm{a}}^2} + {{\rm{a}}^2}{{\rm{r}}^2} + {{\rm{a}}^2}{{\rm{r}}^4})({{\rm{a}}^2}{{\rm{r}}^2} + {{\rm{a}}^2}{{\rm{r}}^4} + {{\rm{a}}^2}{{\rm{r}}^6})\end{array}\]
Now by simplification, we get
\[\begin{array}{l}{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {\rm{(}}{{\rm{a}}^2}(1 + {{\rm{r}}^2} + {{\rm{r}}^4}))({{\rm{a}}^2}{{\rm{r}}^2}(1 + {{\rm{r}}^2} + {{\rm{r}}^4}))\\ = {\rm{(}}{{\rm{a}}^2}{\rm{)(}}{{\rm{a}}^2}{{\rm{r}}^2})(1 + {{\rm{r}}^2} + {{\rm{r}}^4})(1 + {{\rm{r}}^2} + {{\rm{r}}^4})\\ = {{\rm{a}}^4}{{\rm{r}}^2}{(1 + {{\rm{r}}^2} + {{\rm{r}}^4})^2}\end{array}\]
Now taking RHS of the equation and putting the values of a, b, c, d in it.
After putting the values of a, b, c, d , we get
\[{({\rm{ab}} + {\rm{bc}} + {\rm{cd)}}^2} = {({\rm{a}} \times {\rm{ar}} + {\rm{ar}} \times {\rm{a}}{{\rm{r}}^2} + {\rm{a}}{{\rm{r}}^2} \times {\rm{a}}{{\rm{r}}^3}{\rm{)}}^2} = {({{\rm{a}}^2}{\rm{r}} + {{\rm{a}}^2}{{\rm{r}}^3} + {{\rm{a}}^2}{{\rm{r}}^5}{\rm{)}}^2}\]
Now by simplification, we get
\[{({\rm{ab}} + {\rm{bc}} + {\rm{cd)}}^2} = {({{\rm{a}}^2}{\rm{r(}}1 + {{\rm{r}}^2} + {{\rm{r}}^4}{\rm{))}}^2} = {{\rm{a}}^4}{{\rm{r}}^2}{(1 + {{\rm{r}}^2} + {{\rm{r}}^4})^2}\]
We can clearly see that Left hand side of the equation is equal to the right hand side.
Hence we proved that \[{\rm{(}}{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2})({{\rm{b}}^2} + {{\rm{c}}^2} + {{\rm{d}}^2}) = {({\rm{ab + bc + cd)}}^2}\].
Note:
We always have to keep in mind the basic A.P. and G.P series.
A.P. series is \[{\rm{a}},{\rm{a}} + {\rm{d}},{\rm{a}} + 2{\rm{d}},{\rm{a}} + 3{\rm{d,}}............\]
\[{{\rm{n}}^{{\rm{th}}}}{\rm{term }} = {\rm{ a}} + \left( {{\rm{n}} - 1} \right){\rm{d}}\]
Where a is the first term and d is the common difference
G.P. series is \[{\rm{a}},{\rm{ar}},{\rm{a}}{{\rm{r}}^2},{\rm{a}}{{\rm{r}}^3},{\rm{a}}{{\rm{r}}^4},.........\]
\[{{\rm{n}}^{{\rm{th}}}}{\rm{term}} = {\rm{a}}{{\rm{r}}^{{\rm{n}} - 1}}\]
Where, a is the first term of the G.P. and r is the common ratio.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

