
If a, b and c are positive real numbers and $\theta ={{\tan }^{-1}}\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)+{{\tan }^{-1}}\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)+{{\tan }^{-1}}\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)$, then find the value of the angle $\theta $?
(a) $\dfrac{\pi }{4}$,
(b) $\dfrac{\pi }{2}$,
(c) $\dfrac{\pi }{3}$,
(d) 0.
Answer
587.1k+ views
Hint: We start solving the problem by recalling the sum of inverse of the tangent of 3 values i.e., ${{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( y \right)+{{\tan }^{-1}}\left( z \right)={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$. We apply this for the equation given in the problem to find the angle $\theta $. We then make necessary arrangements inside the inverse of tangent and use the facts $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$, $a\sqrt{b}=\sqrt{{{a}^{2}}b}$ to get a value in the numerator. We then make necessary calculations to find the value of the required angle $\theta $.
Complete step-by-step solution:
According to the problem, we have given a, b and c are positive real numbers and $\theta ={{\tan }^{-1}}\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)+{{\tan }^{-1}}\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)+{{\tan }^{-1}}\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)$. We need to find the value of angle $\theta $.
We know that ${{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( y \right)+{{\tan }^{-1}}\left( z \right)={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$. We use this to calculate the value of angle $\theta $.
So, we have \[\theta ={{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{bc}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)}{1-\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)-\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)-\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}\times \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)} \right)\].
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{{{a}^{2}}\left( a+b+c \right)}{abc}}+\sqrt{\dfrac{{{b}^{2}}\left( a+b+c \right)}{abc}}+\sqrt{\dfrac{{{c}^{2}}\left( a+b+c \right)}{abc}}-\left( \sqrt{\dfrac{abc{{\left( a+b+c \right)}^{3}}}{{{\left( abc \right)}^{2}}}} \right)}{1-\left( \sqrt{\dfrac{ab{{\left( a+b+c \right)}^{2}}}{ab{{c}^{2}}}} \right)-\left( \sqrt{\dfrac{bc{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}bc}} \right)-\left( \sqrt{\dfrac{ac{{\left( a+b+c \right)}^{2}}}{a{{b}^{2}}c}} \right)} \right)$.
We use the fact that $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$ to solve for the angle $\theta $.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\dfrac{\sqrt{{{a}^{2}}\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{\sqrt{{{b}^{2}}\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{\sqrt{{{c}^{2}}\left( a+b+c \right)}}{\sqrt{abc}}-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \sqrt{\dfrac{{{a}^{2}}{{b}^{2}}{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \sqrt{\dfrac{{{b}^{2}}{{c}^{2}}{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \sqrt{\dfrac{{{a}^{2}}{{c}^{2}}{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)} \right)$.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\dfrac{a\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{b\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{c\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \dfrac{\sqrt{{{a}^{2}}{{b}^{2}}{{\left( a+b+c \right)}^{2}}}}{\sqrt{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \dfrac{\sqrt{{{b}^{2}}{{c}^{2}}{{\left( a+b+c \right)}^{2}}}}{\sqrt{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \dfrac{\sqrt{{{c}^{2}}{{a}^{2}}{{\left( a+b+c \right)}^{2}}}}{\sqrt{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)} \right)$.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \left( \dfrac{\sqrt{\left( a+b+c \right)}}{\sqrt{abc}} \right)\times \left( a+b+c \right) \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \dfrac{ab\left( a+b+c \right)}{abc} \right)-\left( \dfrac{bc\left( a+b+c \right)}{abc} \right)-\left( \dfrac{ca\left( a+b+c \right)}{abc} \right)} \right)$.
We use the fact that $a\sqrt{b}=\sqrt{{{a}^{2}}b}$ to solve for the angle $\theta $.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \left( \dfrac{\sqrt{\left( a+b+c \right)\times {{\left( a+b+c \right)}^{2}}}}{\sqrt{abc}} \right) \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \left( \dfrac{ab\left( a+b+c \right)}{abc} \right)+\left( \dfrac{bc\left( a+b+c \right)}{abc} \right)+\left( \dfrac{ca\left( a+b+c \right)}{abc} \right) \right)} \right)$.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{\sqrt{{{\left( a+b+c \right)}^{3}}}}{\sqrt{abc}} \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \left( \dfrac{ab\left( a+b+c \right)+bc\left( a+b+c \right)+ca\left( a+b+c \right)}{abc} \right) \right)} \right)$.
We use the fact that $\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}$ to solve for the angle $\theta $.
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \dfrac{\left( a+b+c \right)\left( ab+bc+ca \right)}{abc} \right)} \right)\].
We can see that the two terms in the numerator are the same.
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{0}{\left( \dfrac{abc-\left( \left( a+b+c \right)\left( ab+bc+ca \right) \right)}{abc} \right)} \right)\].
We know that $\dfrac{0}{a}=0$.
\[\Rightarrow \theta ={{\tan }^{-1}}\left( 0 \right)\].
\[\Rightarrow \theta ={{0}^{o}}\].
We have found the value of the angle $\theta $ as ${{0}^{o}}$.
$\therefore$ The value of the angles $\theta $ is ${{0}^{o}}$.
The correct option for the given problem is (d).
Note: We can also solve this problem by assuming $\alpha ={{\tan }^{-1}}\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)$, $\beta ={{\tan }^{-1}}\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)$, $\delta ={{\tan }^{-1}}\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)$ and using the formula $\tan \left( \alpha +\beta +\delta \right)=\dfrac{\tan \alpha +\tan \beta +\tan \delta -\tan \alpha \tan \beta \tan \delta }{1-\tan \alpha \tan \beta -\tan \beta \tan \delta -\tan \delta \tan \alpha }$ to get the required value. Since the options are between $0$ and $\dfrac{\pi }{2}$, we opted for $0$. If the problem is about solving the trigonometric equation then we have to write the general solution that represents all the angles whose tangent is 0.
Complete step-by-step solution:
According to the problem, we have given a, b and c are positive real numbers and $\theta ={{\tan }^{-1}}\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)+{{\tan }^{-1}}\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)+{{\tan }^{-1}}\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)$. We need to find the value of angle $\theta $.
We know that ${{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( y \right)+{{\tan }^{-1}}\left( z \right)={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$. We use this to calculate the value of angle $\theta $.
So, we have \[\theta ={{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{bc}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)}{1-\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)-\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)-\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}\times \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)} \right)\].
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{{{a}^{2}}\left( a+b+c \right)}{abc}}+\sqrt{\dfrac{{{b}^{2}}\left( a+b+c \right)}{abc}}+\sqrt{\dfrac{{{c}^{2}}\left( a+b+c \right)}{abc}}-\left( \sqrt{\dfrac{abc{{\left( a+b+c \right)}^{3}}}{{{\left( abc \right)}^{2}}}} \right)}{1-\left( \sqrt{\dfrac{ab{{\left( a+b+c \right)}^{2}}}{ab{{c}^{2}}}} \right)-\left( \sqrt{\dfrac{bc{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}bc}} \right)-\left( \sqrt{\dfrac{ac{{\left( a+b+c \right)}^{2}}}{a{{b}^{2}}c}} \right)} \right)$.
We use the fact that $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$ to solve for the angle $\theta $.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\dfrac{\sqrt{{{a}^{2}}\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{\sqrt{{{b}^{2}}\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{\sqrt{{{c}^{2}}\left( a+b+c \right)}}{\sqrt{abc}}-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \sqrt{\dfrac{{{a}^{2}}{{b}^{2}}{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \sqrt{\dfrac{{{b}^{2}}{{c}^{2}}{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \sqrt{\dfrac{{{a}^{2}}{{c}^{2}}{{\left( a+b+c \right)}^{2}}}{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)} \right)$.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\dfrac{a\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{b\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}+\dfrac{c\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \dfrac{\sqrt{{{a}^{2}}{{b}^{2}}{{\left( a+b+c \right)}^{2}}}}{\sqrt{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \dfrac{\sqrt{{{b}^{2}}{{c}^{2}}{{\left( a+b+c \right)}^{2}}}}{\sqrt{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)-\left( \dfrac{\sqrt{{{c}^{2}}{{a}^{2}}{{\left( a+b+c \right)}^{2}}}}{\sqrt{{{a}^{2}}{{b}^{2}}{{c}^{2}}}} \right)} \right)$.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \left( \dfrac{\sqrt{\left( a+b+c \right)}}{\sqrt{abc}} \right)\times \left( a+b+c \right) \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \dfrac{ab\left( a+b+c \right)}{abc} \right)-\left( \dfrac{bc\left( a+b+c \right)}{abc} \right)-\left( \dfrac{ca\left( a+b+c \right)}{abc} \right)} \right)$.
We use the fact that $a\sqrt{b}=\sqrt{{{a}^{2}}b}$ to solve for the angle $\theta $.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \left( \dfrac{\sqrt{\left( a+b+c \right)\times {{\left( a+b+c \right)}^{2}}}}{\sqrt{abc}} \right) \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \left( \dfrac{ab\left( a+b+c \right)}{abc} \right)+\left( \dfrac{bc\left( a+b+c \right)}{abc} \right)+\left( \dfrac{ca\left( a+b+c \right)}{abc} \right) \right)} \right)$.
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{\sqrt{{{\left( a+b+c \right)}^{3}}}}{\sqrt{abc}} \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \left( \dfrac{ab\left( a+b+c \right)+bc\left( a+b+c \right)+ca\left( a+b+c \right)}{abc} \right) \right)} \right)$.
We use the fact that $\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}$ to solve for the angle $\theta $.
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)-\left( \sqrt{\dfrac{{{\left( a+b+c \right)}^{3}}}{\left( abc \right)}} \right)}{1-\left( \dfrac{\left( a+b+c \right)\left( ab+bc+ca \right)}{abc} \right)} \right)\].
We can see that the two terms in the numerator are the same.
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{0}{\left( \dfrac{abc-\left( \left( a+b+c \right)\left( ab+bc+ca \right) \right)}{abc} \right)} \right)\].
We know that $\dfrac{0}{a}=0$.
\[\Rightarrow \theta ={{\tan }^{-1}}\left( 0 \right)\].
\[\Rightarrow \theta ={{0}^{o}}\].
We have found the value of the angle $\theta $ as ${{0}^{o}}$.
$\therefore$ The value of the angles $\theta $ is ${{0}^{o}}$.
The correct option for the given problem is (d).
Note: We can also solve this problem by assuming $\alpha ={{\tan }^{-1}}\left( \sqrt{\dfrac{a\left( a+b+c \right)}{bc}} \right)$, $\beta ={{\tan }^{-1}}\left( \sqrt{\dfrac{b\left( a+b+c \right)}{ca}} \right)$, $\delta ={{\tan }^{-1}}\left( \sqrt{\dfrac{c\left( a+b+c \right)}{ab}} \right)$ and using the formula $\tan \left( \alpha +\beta +\delta \right)=\dfrac{\tan \alpha +\tan \beta +\tan \delta -\tan \alpha \tan \beta \tan \delta }{1-\tan \alpha \tan \beta -\tan \beta \tan \delta -\tan \delta \tan \alpha }$ to get the required value. Since the options are between $0$ and $\dfrac{\pi }{2}$, we opted for $0$. If the problem is about solving the trigonometric equation then we have to write the general solution that represents all the angles whose tangent is 0.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

