
If a, b and c are non-zero numbers then the inverse of the matrix \[\text{A=}\left| \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right|\] is equal to
\[\begin{align}
& A.\left| \begin{matrix}
{{a}^{-1}} & 0 & 0 \\
0 & {{b}^{-1}} & 0 \\
0 & 0 & {{c}^{-1}} \\
\end{matrix} \right| \\
& B.\dfrac{1}{abc}\left| \begin{matrix}
{{a}^{-1}} & 0 & 0 \\
0 & {{b}^{-1}} & 0 \\
0 & 0 & {{c}^{-1}} \\
\end{matrix} \right| \\
& \text{C}\text{.}\dfrac{1}{abc}\left| \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right| \\
& \text{D}\text{.}\dfrac{1}{abc}\left| \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right| \\
\end{align}\]
Answer
594k+ views
Hint: We will use the basic definition in terms of matrices to solve the question. A minor is the determinant of a square matrix formed by deleting one row and one column from a longer matrix. The cofactor is the value obtained on minor with using sign '+' or '-' depending upon element position and the transpose of a matrix is obtained by reversing rows and columns of each element of the original matrix. The adjoint of a matrix is the transpose of the cofactor matrix. Now, we can use the below formula to get the answer, \[{{\text{A}}^{-1}}=\dfrac{1}{\left| A \right|}\left[ \text{adjA} \right]\]
Complete step-by-step solution:
Given that matrix,
\[\text{A=}\left| \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right|\]
Where, a, b and c are non-zero.
To determine ${{\text{A}}^{-1}}$ we will use the formula:
\[{{\text{A}}^{-1}}=\dfrac{1}{\left| A \right|}\left[ \text{adjA} \right]\]
Where, adj A is the adjoint of A and adjoint of A can be determined using minors and cofactors of matrix.
Minor of a matrix-A minor is the determinant of the square matrix formed by deleting one row and one column from some larger square matrix.
Example if \[\text{M=}\left| \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{matrix} \right|\]
Then, minor along (1, 2) position of M would be
\[\text{M(1,2)=}\left| \begin{matrix}
4 & 6 \\
7 & 9 \\
\end{matrix} \right|\]
This is obtained by deleting row 1 and column 2 from the matrix M.
Cofactor of a matrix: Cofactor is the number we get when we remove the column and row of any element of matrix. We also take sign '+' or '-' into count here.
Example: like in the matrix M taken before
\[\text{M=}\left| \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{matrix} \right|\]
The cofactor of \[\text{M(1,2)=}\left| \begin{matrix}
4 & 6 \\
7 & 9 \\
\end{matrix} \right|=4\times 9-7\times 6=-6\]
Also in cofactor, we take account of sign '+' or '-' when position of element is (i, j) then sign comes according as ${{\left( -1 \right)}^{i+j}}$
Now, here position is (1, 2) then sign \[\Rightarrow {{\left( -1 \right)}^{1+2}}={{\left( -1 \right)}^{3}}=-1\] then cofactor is \[\left( -6 \right)\left( -1 \right)=+6\]
Now, coming to original matrix
\[\text{A=}\left| \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right|\]
Then, determinant \[\left| A \right|=a\left[ bc-0 \right]=abc\]
So \[\left| A \right|=abc\]
Now, we compute adj (A).
Using the theory and example explained of minor and cofactor above, we get:
\[\text{adj}\left( A \right)=\left| \begin{matrix}
{{\left( -1 \right)}^{1+1}}bc & {{\left( -1 \right)}^{1+2}}0 & {{\left( -1 \right)}^{1+3}}0 \\
{{\left( -1 \right)}^{2+1}}0 & {{\left( -1 \right)}^{2+2}}ac & {{\left( -1 \right)}^{2+3}}0 \\
{{\left( -1 \right)}^{3+1}}0 & {{\left( -1 \right)}^{3+2}}0 & {{\left( -1 \right)}^{3+3}}ab \\
\end{matrix} \right|\]
Then, \[\text{adj(A)=}{{\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right|}^{T}}\]
Here, \[{{\left| {} \right|}^{T}}\to \text{ T denotes transpose of matrix}\]
Transpose of a matrix: The transpose of a matrix is an operator which flips a matrix over its diagonal and reverse its rows and columns. Denoted by ${{A}^{T}}$
Now, \[\begin{align}
& \text{adj(A)=}{{\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right|}^{T}} \\
& \text{adj(A)=}\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right| \\
\end{align}\]
Therefore, \[\begin{align}
& {{\text{A}}^{-1}}=\dfrac{1}{\left| A \right|}\left[ \text{adjA} \right] \\
& {{\text{A}}^{-1}}=\dfrac{1}{abc}\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right| \\
\end{align}\]
Multiplying $\dfrac{1}{abc}$ inside of matrix in its all rows, we get
\[\begin{align}
& {{\text{A}}^{-1}}=\left| \begin{matrix}
\dfrac{bc}{abc} & 0 & 0 \\
0 & \dfrac{ac}{abc} & 0 \\
0 & 0 & \dfrac{ab}{abc} \\
\end{matrix} \right| \\
& {{\text{A}}^{-1}}=\left| \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right| \\
& {{\text{A}}^{-1}}=\left| \begin{matrix}
{{a}^{-1}} & 0 & 0 \\
0 & {{b}^{-1}} & 0 \\
0 & 0 & {{c}^{-1}} \\
\end{matrix} \right| \\
\end{align}\]
Which is the required result.
Hence, option A is correct.
Note: The possibility of error in this question can be at a point where \[\dfrac{1}{abc}\] is multiplied inside the matrix of adj (A). When we multiply \[\dfrac{1}{abc}\] inside, we need to multiply it in all rows because this is a matrix, not a determinant. Determinants have a property to be multiplied to any one row or column, not matrices. So, take this into consideration while solving.
Complete step-by-step solution:
Given that matrix,
\[\text{A=}\left| \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right|\]
Where, a, b and c are non-zero.
To determine ${{\text{A}}^{-1}}$ we will use the formula:
\[{{\text{A}}^{-1}}=\dfrac{1}{\left| A \right|}\left[ \text{adjA} \right]\]
Where, adj A is the adjoint of A and adjoint of A can be determined using minors and cofactors of matrix.
Minor of a matrix-A minor is the determinant of the square matrix formed by deleting one row and one column from some larger square matrix.
Example if \[\text{M=}\left| \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{matrix} \right|\]
Then, minor along (1, 2) position of M would be
\[\text{M(1,2)=}\left| \begin{matrix}
4 & 6 \\
7 & 9 \\
\end{matrix} \right|\]
This is obtained by deleting row 1 and column 2 from the matrix M.
Cofactor of a matrix: Cofactor is the number we get when we remove the column and row of any element of matrix. We also take sign '+' or '-' into count here.
Example: like in the matrix M taken before
\[\text{M=}\left| \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{matrix} \right|\]
The cofactor of \[\text{M(1,2)=}\left| \begin{matrix}
4 & 6 \\
7 & 9 \\
\end{matrix} \right|=4\times 9-7\times 6=-6\]
Also in cofactor, we take account of sign '+' or '-' when position of element is (i, j) then sign comes according as ${{\left( -1 \right)}^{i+j}}$
Now, here position is (1, 2) then sign \[\Rightarrow {{\left( -1 \right)}^{1+2}}={{\left( -1 \right)}^{3}}=-1\] then cofactor is \[\left( -6 \right)\left( -1 \right)=+6\]
Now, coming to original matrix
\[\text{A=}\left| \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right|\]
Then, determinant \[\left| A \right|=a\left[ bc-0 \right]=abc\]
So \[\left| A \right|=abc\]
Now, we compute adj (A).
Using the theory and example explained of minor and cofactor above, we get:
\[\text{adj}\left( A \right)=\left| \begin{matrix}
{{\left( -1 \right)}^{1+1}}bc & {{\left( -1 \right)}^{1+2}}0 & {{\left( -1 \right)}^{1+3}}0 \\
{{\left( -1 \right)}^{2+1}}0 & {{\left( -1 \right)}^{2+2}}ac & {{\left( -1 \right)}^{2+3}}0 \\
{{\left( -1 \right)}^{3+1}}0 & {{\left( -1 \right)}^{3+2}}0 & {{\left( -1 \right)}^{3+3}}ab \\
\end{matrix} \right|\]
Then, \[\text{adj(A)=}{{\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right|}^{T}}\]
Here, \[{{\left| {} \right|}^{T}}\to \text{ T denotes transpose of matrix}\]
Transpose of a matrix: The transpose of a matrix is an operator which flips a matrix over its diagonal and reverse its rows and columns. Denoted by ${{A}^{T}}$
Now, \[\begin{align}
& \text{adj(A)=}{{\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right|}^{T}} \\
& \text{adj(A)=}\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right| \\
\end{align}\]
Therefore, \[\begin{align}
& {{\text{A}}^{-1}}=\dfrac{1}{\left| A \right|}\left[ \text{adjA} \right] \\
& {{\text{A}}^{-1}}=\dfrac{1}{abc}\left| \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right| \\
\end{align}\]
Multiplying $\dfrac{1}{abc}$ inside of matrix in its all rows, we get
\[\begin{align}
& {{\text{A}}^{-1}}=\left| \begin{matrix}
\dfrac{bc}{abc} & 0 & 0 \\
0 & \dfrac{ac}{abc} & 0 \\
0 & 0 & \dfrac{ab}{abc} \\
\end{matrix} \right| \\
& {{\text{A}}^{-1}}=\left| \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right| \\
& {{\text{A}}^{-1}}=\left| \begin{matrix}
{{a}^{-1}} & 0 & 0 \\
0 & {{b}^{-1}} & 0 \\
0 & 0 & {{c}^{-1}} \\
\end{matrix} \right| \\
\end{align}\]
Which is the required result.
Hence, option A is correct.
Note: The possibility of error in this question can be at a point where \[\dfrac{1}{abc}\] is multiplied inside the matrix of adj (A). When we multiply \[\dfrac{1}{abc}\] inside, we need to multiply it in all rows because this is a matrix, not a determinant. Determinants have a property to be multiplied to any one row or column, not matrices. So, take this into consideration while solving.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

