
If \[a\] and \[b\] are two non collinear vectors and \[x,y\] are two scalars such that \[\overrightarrow a x + \overrightarrow b y = 0\] this implies that:
A. \[x = y = - 1\]
B. \[x = y = 0\]
C. \[x = y = 1\]
D. \[x = y = i\]
Answer
566.7k+ views
Hint: In this question, we will go for option verification and find out for which values of \[x,y\] the given two vectors \[a\] and \[b\]are non-collinear. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[a\] and \[b\] are two non-collinear vectors and \[x,y\] are two scalars.
Also, \[\overrightarrow a x + \overrightarrow b y = 0\]
That implies \[\overrightarrow a = - \dfrac{y}{x}\overrightarrow b ..................................\left( 1 \right)\]
If \[x\] and \[y\] are non-zero, then the two vectors \[a\] and \[b\] are collinear, because \[\overrightarrow a = \lambda \overrightarrow b \] where \[\lambda \] is scalar as shown in the below figure:
Now, we will go for the option verification to check whether the two vectors \[a\] and \[b\] are collinear or not.
A. By substituting \[x = y = - 1\] in equation (1), we have
\[
\Rightarrow \overrightarrow a = - \dfrac{{ - 1}}{{ - 1}}\overrightarrow b \\
\therefore \overrightarrow a = - \overrightarrow b \\
\]
which is of the form \[\overrightarrow a = \lambda \overrightarrow b \]. So, for the values of \[x = y = - 1\], \[a\] and \[b\] are collinear vectors.
B. By substituting \[x = y = 0\] in equation (1), we have
\[ \Rightarrow \overrightarrow a = - \dfrac{0}{0}\overrightarrow b \]
which is an indeterminate form. So, for the values of \[x = y = 0\], \[a\] and \[b\] are non-collinear vectors.
C. By substituting \[x = y = 1\] in equation (1), we have
\[
\Rightarrow \overrightarrow a = - \dfrac{1}{1}\overrightarrow b \\
\therefore \overrightarrow a = - \overrightarrow b \\
\]
which is of the form \[\overrightarrow a = \lambda \overrightarrow b \]. So, for the values of \[x = y = 1\], \[a\] and \[b\] are collinear vectors.
D. By substituting \[x = y = i\] in equation (1), we have
\[
\Rightarrow \overrightarrow a = - \dfrac{i}{i}\overrightarrow b \\
\therefore \overrightarrow a = - \overrightarrow b \\
\]
which is of the form \[\overrightarrow a = \lambda \overrightarrow b \]. So, for the values of \[x = y = i\], \[a\] and \[b\] are collinear vectors.
Therefore, only for the values of \[x = y = 0\], the two vectors \[a\] and \[b\] are collinear.
Thus, the correct option is B. \[x = y = 0\]
So, the correct answer is “Option B”.
Note: We can use any of the given conditions to prove the collinearity for two vectors:
1. Two vectors \[a\] and \[b\] are collinear if there exists a number \[n\] such that \[\overrightarrow a = n\overrightarrow b \].
2. Two vectors are collinear if relations of their coordinates are equal.
3. Two vectors are collinear if their cross product is equal to the zero vector.
Complete step-by-step answer:
Given \[a\] and \[b\] are two non-collinear vectors and \[x,y\] are two scalars.
Also, \[\overrightarrow a x + \overrightarrow b y = 0\]
That implies \[\overrightarrow a = - \dfrac{y}{x}\overrightarrow b ..................................\left( 1 \right)\]
If \[x\] and \[y\] are non-zero, then the two vectors \[a\] and \[b\] are collinear, because \[\overrightarrow a = \lambda \overrightarrow b \] where \[\lambda \] is scalar as shown in the below figure:
Now, we will go for the option verification to check whether the two vectors \[a\] and \[b\] are collinear or not.
A. By substituting \[x = y = - 1\] in equation (1), we have
\[
\Rightarrow \overrightarrow a = - \dfrac{{ - 1}}{{ - 1}}\overrightarrow b \\
\therefore \overrightarrow a = - \overrightarrow b \\
\]
which is of the form \[\overrightarrow a = \lambda \overrightarrow b \]. So, for the values of \[x = y = - 1\], \[a\] and \[b\] are collinear vectors.
B. By substituting \[x = y = 0\] in equation (1), we have
\[ \Rightarrow \overrightarrow a = - \dfrac{0}{0}\overrightarrow b \]
which is an indeterminate form. So, for the values of \[x = y = 0\], \[a\] and \[b\] are non-collinear vectors.
C. By substituting \[x = y = 1\] in equation (1), we have
\[
\Rightarrow \overrightarrow a = - \dfrac{1}{1}\overrightarrow b \\
\therefore \overrightarrow a = - \overrightarrow b \\
\]
which is of the form \[\overrightarrow a = \lambda \overrightarrow b \]. So, for the values of \[x = y = 1\], \[a\] and \[b\] are collinear vectors.
D. By substituting \[x = y = i\] in equation (1), we have
\[
\Rightarrow \overrightarrow a = - \dfrac{i}{i}\overrightarrow b \\
\therefore \overrightarrow a = - \overrightarrow b \\
\]
which is of the form \[\overrightarrow a = \lambda \overrightarrow b \]. So, for the values of \[x = y = i\], \[a\] and \[b\] are collinear vectors.
Therefore, only for the values of \[x = y = 0\], the two vectors \[a\] and \[b\] are collinear.
Thus, the correct option is B. \[x = y = 0\]
So, the correct answer is “Option B”.
Note: We can use any of the given conditions to prove the collinearity for two vectors:
1. Two vectors \[a\] and \[b\] are collinear if there exists a number \[n\] such that \[\overrightarrow a = n\overrightarrow b \].
2. Two vectors are collinear if relations of their coordinates are equal.
3. Two vectors are collinear if their cross product is equal to the zero vector.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

