
If $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$ , then :
a.a < b
b.a = b
c.a > b
d.a – b = ${100^{49}}$
Answer
577.8k+ views
Hint: we are given that $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$and they can be written as ${101^{50}} = {(100 + 1)^{50}}$and ${99^{50}} = {(100 - 1)^{50}}$. And expanding these using the binomial expansions ${(1 + x)^n} = 1 + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + {}^n{C_3}{x^{n - 3}} + ......$ and${(1 - x)^n} = 1 - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - {}^n{C_3}{x^{n - 3}} - ......$and subtracting we get that and rearranging it gives us the required answer.
Complete step-by-step answer:
We are given that $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$
Now we can write
$ \Rightarrow {101^{50}} = {(100 + 1)^{50}}$
Using binomial expansion ,
${(1 + x)^n} = 1 + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + {}^n{C_3}{x^{n - 3}} + ......$
We can write the above number as
$
\Rightarrow {(1 + 100)^{50}} = 1 + {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 + 100)^{50}} = 1 + 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (1)
Now we can write
$ \Rightarrow {99^{50}} = {(100 - 1)^{50}}$
Using binomial expansion ,
${(1 - x)^n} = 1 - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - {}^n{C_3}{x^{n - 3}} - ......$
We can write the above number as
$
\Rightarrow {(1 - 100)^{50}} = 1 - {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 - 100)^{50}} = 1 - 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (2)
Let's subtract equation (2) from (1)
$
\Rightarrow {101^{50}} - {99^{50}} = \left( {1 + 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} + {}^{50}{C_3}{{(100)}^{47}} + ......} \right) - \left( {1 - 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} - {}^{50}{C_3}{{(100)}^{47}} + ......} \right) \\
\Rightarrow {101^{50}} - {99^{50}} = 2\left\{ {50*{{100}^{49}} + {}^{50}{C_3}{{(100)}^{47}} + ....} \right\} \\
$From this we get that
$
\Rightarrow {101^{50}} - {99^{50}} > {100^{50}} \\
\Rightarrow {101^{50}} > {100^{50}} + {99^{50}} \\
\Rightarrow b > a \\
$
Therefore the correct option is a.
Note: 1.There are n+1 terms in the expansion of ${(x + y)^n}$
2.The degree of each term is n
3.The powers on x begin with n and decrease to 0
4.The powers on y begin with 0 and increase to n
5.The coefficients are symmetric
Complete step-by-step answer:
We are given that $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$
Now we can write
$ \Rightarrow {101^{50}} = {(100 + 1)^{50}}$
Using binomial expansion ,
${(1 + x)^n} = 1 + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + {}^n{C_3}{x^{n - 3}} + ......$
We can write the above number as
$
\Rightarrow {(1 + 100)^{50}} = 1 + {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 + 100)^{50}} = 1 + 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (1)
Now we can write
$ \Rightarrow {99^{50}} = {(100 - 1)^{50}}$
Using binomial expansion ,
${(1 - x)^n} = 1 - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - {}^n{C_3}{x^{n - 3}} - ......$
We can write the above number as
$
\Rightarrow {(1 - 100)^{50}} = 1 - {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 - 100)^{50}} = 1 - 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (2)
Let's subtract equation (2) from (1)
$
\Rightarrow {101^{50}} - {99^{50}} = \left( {1 + 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} + {}^{50}{C_3}{{(100)}^{47}} + ......} \right) - \left( {1 - 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} - {}^{50}{C_3}{{(100)}^{47}} + ......} \right) \\
\Rightarrow {101^{50}} - {99^{50}} = 2\left\{ {50*{{100}^{49}} + {}^{50}{C_3}{{(100)}^{47}} + ....} \right\} \\
$From this we get that
$
\Rightarrow {101^{50}} - {99^{50}} > {100^{50}} \\
\Rightarrow {101^{50}} > {100^{50}} + {99^{50}} \\
\Rightarrow b > a \\
$
Therefore the correct option is a.
Note: 1.There are n+1 terms in the expansion of ${(x + y)^n}$
2.The degree of each term is n
3.The powers on x begin with n and decrease to 0
4.The powers on y begin with 0 and increase to n
5.The coefficients are symmetric
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

