
If $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$ , then :
a.a < b
b.a = b
c.a > b
d.a – b = ${100^{49}}$
Answer
511.2k+ views
Hint: we are given that $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$and they can be written as ${101^{50}} = {(100 + 1)^{50}}$and ${99^{50}} = {(100 - 1)^{50}}$. And expanding these using the binomial expansions ${(1 + x)^n} = 1 + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + {}^n{C_3}{x^{n - 3}} + ......$ and${(1 - x)^n} = 1 - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - {}^n{C_3}{x^{n - 3}} - ......$and subtracting we get that and rearranging it gives us the required answer.
Complete step-by-step answer:
We are given that $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$
Now we can write
$ \Rightarrow {101^{50}} = {(100 + 1)^{50}}$
Using binomial expansion ,
${(1 + x)^n} = 1 + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + {}^n{C_3}{x^{n - 3}} + ......$
We can write the above number as
$
\Rightarrow {(1 + 100)^{50}} = 1 + {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 + 100)^{50}} = 1 + 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (1)
Now we can write
$ \Rightarrow {99^{50}} = {(100 - 1)^{50}}$
Using binomial expansion ,
${(1 - x)^n} = 1 - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - {}^n{C_3}{x^{n - 3}} - ......$
We can write the above number as
$
\Rightarrow {(1 - 100)^{50}} = 1 - {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 - 100)^{50}} = 1 - 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (2)
Let's subtract equation (2) from (1)
$
\Rightarrow {101^{50}} - {99^{50}} = \left( {1 + 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} + {}^{50}{C_3}{{(100)}^{47}} + ......} \right) - \left( {1 - 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} - {}^{50}{C_3}{{(100)}^{47}} + ......} \right) \\
\Rightarrow {101^{50}} - {99^{50}} = 2\left\{ {50*{{100}^{49}} + {}^{50}{C_3}{{(100)}^{47}} + ....} \right\} \\
$From this we get that
$
\Rightarrow {101^{50}} - {99^{50}} > {100^{50}} \\
\Rightarrow {101^{50}} > {100^{50}} + {99^{50}} \\
\Rightarrow b > a \\
$
Therefore the correct option is a.
Note: 1.There are n+1 terms in the expansion of ${(x + y)^n}$
2.The degree of each term is n
3.The powers on x begin with n and decrease to 0
4.The powers on y begin with 0 and increase to n
5.The coefficients are symmetric
Complete step-by-step answer:
We are given that $a = {99^{50}} + {100^{50}}$ and $b = {101^{50}}$
Now we can write
$ \Rightarrow {101^{50}} = {(100 + 1)^{50}}$
Using binomial expansion ,
${(1 + x)^n} = 1 + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + {}^n{C_3}{x^{n - 3}} + ......$
We can write the above number as
$
\Rightarrow {(1 + 100)^{50}} = 1 + {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 + 100)^{50}} = 1 + 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} + {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (1)
Now we can write
$ \Rightarrow {99^{50}} = {(100 - 1)^{50}}$
Using binomial expansion ,
${(1 - x)^n} = 1 - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - {}^n{C_3}{x^{n - 3}} - ......$
We can write the above number as
$
\Rightarrow {(1 - 100)^{50}} = 1 - {}^{50}{C_1}{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\Rightarrow {(1 - 100)^{50}} = 1 - 50*{(100)^{49}} + {}^{50}{C_2}{(100)^{48}} - {}^{50}{C_3}{(100)^{47}} + ...... \\
\\
$
Let this be equation (2)
Let's subtract equation (2) from (1)
$
\Rightarrow {101^{50}} - {99^{50}} = \left( {1 + 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} + {}^{50}{C_3}{{(100)}^{47}} + ......} \right) - \left( {1 - 50*{{(100)}^{49}} + {}^{50}{C_2}{{(100)}^{48}} - {}^{50}{C_3}{{(100)}^{47}} + ......} \right) \\
\Rightarrow {101^{50}} - {99^{50}} = 2\left\{ {50*{{100}^{49}} + {}^{50}{C_3}{{(100)}^{47}} + ....} \right\} \\
$From this we get that
$
\Rightarrow {101^{50}} - {99^{50}} > {100^{50}} \\
\Rightarrow {101^{50}} > {100^{50}} + {99^{50}} \\
\Rightarrow b > a \\
$
Therefore the correct option is a.
Note: 1.There are n+1 terms in the expansion of ${(x + y)^n}$
2.The degree of each term is n
3.The powers on x begin with n and decrease to 0
4.The powers on y begin with 0 and increase to n
5.The coefficients are symmetric
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the chemical name and formula of sindoor class 11 chemistry CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

What organs are located on the left side of your body class 11 biology CBSE

How do I get the molar mass of urea class 11 chemistry CBSE
