
If \[A = {35^ \circ }\], \[B = {15^ \circ }\] and \[C = {40^ \circ }\], then \[\tan A\tan B + \tan B\tan C + \tan C\tan A\] is equal to
A. 0
B. 1
C. 2
D. 3
Answer
511.2k+ views
Hint: Here in this question, we have to find the exact value of a given trigonometric expression by using the tangent sum identity. First rewrite the given angle in the form of addition of two angles, then the standard trigonometric formula tangent sum identity defined as i.e., \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x \cdot \tan y}}\] and further simplify by using a definitions and table of standard angles of trigonometric to get the required value.
Complete step by step answer:
Consider the given angles
\[A = {35^ \circ }\], \[B = {15^ \circ }\] and \[C = {40^ \circ }\]
On adding all the angles, we have
\[ \Rightarrow \,\,\,A + B + C = {35^ \circ } + {15^ \circ } + {40^ \circ }\]
\[ \Rightarrow \,\,\,A + B + C = {90^ \circ }\]
Taking ‘tan’ on both sides, then we have
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \tan \left( {{{90}^ \circ }} \right)\] ------(1)
By the definition of trigonometric ratios, the tangent is the ratio of cosine and sine ratios i.e., \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Then RHS of equation (1) becomes
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] ------(2)
Now apply a trigonometric tangent sum identity in LHS part i.e., \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x \cdot \tan y}}\].
In equation (2), \[x = A + B\] and \[y = C\], then
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] -----(3)
We know the table of standard angle of trigonometric ratios, the value of \[\sin \left( {{{90}^ \circ }} \right) = 1\] and \[\cos \left( {{{90}^ \circ }} \right) = 1\], on substituting the values in equation (3) we have
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{1}{0}\]
On equating the denominators of LHS and RHS, then
\[ \Rightarrow \,\,\,1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = 0\]
Subtract 1 on both the sides, then
\[ \Rightarrow \,\,\, - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = - 1\]
Cancelling the ‘\[ - \,\,ve\]‘ sign on both sides, we get
\[ \Rightarrow \,\,\,\tan \left( {A + B} \right) \cdot \tan \left( C \right) = 1\]
Again, by the sum identity of tangent ratio
\[ \Rightarrow \,\,\,\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}} \right] \cdot \tan \left( C \right) = 1\]
Multiply both side by \[1 - \tan A \cdot \tan B\], then
\[ \Rightarrow \,\,\,\left( {\tan A + \tan B} \right) \cdot \tan C = 1 - \tan A \cdot \tan B\]
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C = 1 - \tan A \cdot \tan B\]
Add ‘\[\tan A \cdot \tan B\]’ on both side, we get
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C + \tan A \cdot \tan B = 1\]
Or
\[\therefore \,\,\,\,\,\,\tan A \cdot \tan B + \tan B \cdot \tan C + \tan C \cdot \tan A = 1\].
Hence, the required value is 1.
So, the correct answer is “Option B”.
Note: When the question is based on trigonometric function, we must know about the definitions of all six trigonometric ratios and value of their standard angles. Remember all the basic formulas like trigonometric identity, half and double angle formula, addition and difference identity of trigonometric function and transformation formulas.
Complete step by step answer:
Consider the given angles
\[A = {35^ \circ }\], \[B = {15^ \circ }\] and \[C = {40^ \circ }\]
On adding all the angles, we have
\[ \Rightarrow \,\,\,A + B + C = {35^ \circ } + {15^ \circ } + {40^ \circ }\]
\[ \Rightarrow \,\,\,A + B + C = {90^ \circ }\]
Taking ‘tan’ on both sides, then we have
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \tan \left( {{{90}^ \circ }} \right)\] ------(1)
By the definition of trigonometric ratios, the tangent is the ratio of cosine and sine ratios i.e., \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Then RHS of equation (1) becomes
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] ------(2)
Now apply a trigonometric tangent sum identity in LHS part i.e., \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x \cdot \tan y}}\].
In equation (2), \[x = A + B\] and \[y = C\], then
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] -----(3)
We know the table of standard angle of trigonometric ratios, the value of \[\sin \left( {{{90}^ \circ }} \right) = 1\] and \[\cos \left( {{{90}^ \circ }} \right) = 1\], on substituting the values in equation (3) we have
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{1}{0}\]
On equating the denominators of LHS and RHS, then
\[ \Rightarrow \,\,\,1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = 0\]
Subtract 1 on both the sides, then
\[ \Rightarrow \,\,\, - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = - 1\]
Cancelling the ‘\[ - \,\,ve\]‘ sign on both sides, we get
\[ \Rightarrow \,\,\,\tan \left( {A + B} \right) \cdot \tan \left( C \right) = 1\]
Again, by the sum identity of tangent ratio
\[ \Rightarrow \,\,\,\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}} \right] \cdot \tan \left( C \right) = 1\]
Multiply both side by \[1 - \tan A \cdot \tan B\], then
\[ \Rightarrow \,\,\,\left( {\tan A + \tan B} \right) \cdot \tan C = 1 - \tan A \cdot \tan B\]
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C = 1 - \tan A \cdot \tan B\]
Add ‘\[\tan A \cdot \tan B\]’ on both side, we get
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C + \tan A \cdot \tan B = 1\]
Or
\[\therefore \,\,\,\,\,\,\tan A \cdot \tan B + \tan B \cdot \tan C + \tan C \cdot \tan A = 1\].
Hence, the required value is 1.
So, the correct answer is “Option B”.
Note: When the question is based on trigonometric function, we must know about the definitions of all six trigonometric ratios and value of their standard angles. Remember all the basic formulas like trigonometric identity, half and double angle formula, addition and difference identity of trigonometric function and transformation formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

