
If \[A = {35^ \circ }\], \[B = {15^ \circ }\] and \[C = {40^ \circ }\], then \[\tan A\tan B + \tan B\tan C + \tan C\tan A\] is equal to
A. 0
B. 1
C. 2
D. 3
Answer
497.7k+ views
Hint: Here in this question, we have to find the exact value of a given trigonometric expression by using the tangent sum identity. First rewrite the given angle in the form of addition of two angles, then the standard trigonometric formula tangent sum identity defined as i.e., \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x \cdot \tan y}}\] and further simplify by using a definitions and table of standard angles of trigonometric to get the required value.
Complete step by step answer:
Consider the given angles
\[A = {35^ \circ }\], \[B = {15^ \circ }\] and \[C = {40^ \circ }\]
On adding all the angles, we have
\[ \Rightarrow \,\,\,A + B + C = {35^ \circ } + {15^ \circ } + {40^ \circ }\]
\[ \Rightarrow \,\,\,A + B + C = {90^ \circ }\]
Taking ‘tan’ on both sides, then we have
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \tan \left( {{{90}^ \circ }} \right)\] ------(1)
By the definition of trigonometric ratios, the tangent is the ratio of cosine and sine ratios i.e., \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Then RHS of equation (1) becomes
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] ------(2)
Now apply a trigonometric tangent sum identity in LHS part i.e., \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x \cdot \tan y}}\].
In equation (2), \[x = A + B\] and \[y = C\], then
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] -----(3)
We know the table of standard angle of trigonometric ratios, the value of \[\sin \left( {{{90}^ \circ }} \right) = 1\] and \[\cos \left( {{{90}^ \circ }} \right) = 1\], on substituting the values in equation (3) we have
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{1}{0}\]
On equating the denominators of LHS and RHS, then
\[ \Rightarrow \,\,\,1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = 0\]
Subtract 1 on both the sides, then
\[ \Rightarrow \,\,\, - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = - 1\]
Cancelling the ‘\[ - \,\,ve\]‘ sign on both sides, we get
\[ \Rightarrow \,\,\,\tan \left( {A + B} \right) \cdot \tan \left( C \right) = 1\]
Again, by the sum identity of tangent ratio
\[ \Rightarrow \,\,\,\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}} \right] \cdot \tan \left( C \right) = 1\]
Multiply both side by \[1 - \tan A \cdot \tan B\], then
\[ \Rightarrow \,\,\,\left( {\tan A + \tan B} \right) \cdot \tan C = 1 - \tan A \cdot \tan B\]
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C = 1 - \tan A \cdot \tan B\]
Add ‘\[\tan A \cdot \tan B\]’ on both side, we get
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C + \tan A \cdot \tan B = 1\]
Or
\[\therefore \,\,\,\,\,\,\tan A \cdot \tan B + \tan B \cdot \tan C + \tan C \cdot \tan A = 1\].
Hence, the required value is 1.
So, the correct answer is “Option B”.
Note: When the question is based on trigonometric function, we must know about the definitions of all six trigonometric ratios and value of their standard angles. Remember all the basic formulas like trigonometric identity, half and double angle formula, addition and difference identity of trigonometric function and transformation formulas.
Complete step by step answer:
Consider the given angles
\[A = {35^ \circ }\], \[B = {15^ \circ }\] and \[C = {40^ \circ }\]
On adding all the angles, we have
\[ \Rightarrow \,\,\,A + B + C = {35^ \circ } + {15^ \circ } + {40^ \circ }\]
\[ \Rightarrow \,\,\,A + B + C = {90^ \circ }\]
Taking ‘tan’ on both sides, then we have
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \tan \left( {{{90}^ \circ }} \right)\] ------(1)
By the definition of trigonometric ratios, the tangent is the ratio of cosine and sine ratios i.e., \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Then RHS of equation (1) becomes
\[ \Rightarrow \,\,\,\tan \left( {A + B + C} \right) = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] ------(2)
Now apply a trigonometric tangent sum identity in LHS part i.e., \[\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x \cdot \tan y}}\].
In equation (2), \[x = A + B\] and \[y = C\], then
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{{\sin \left( {{{90}^ \circ }} \right)}}{{\cos \left( {{{90}^ \circ }} \right)}}\] -----(3)
We know the table of standard angle of trigonometric ratios, the value of \[\sin \left( {{{90}^ \circ }} \right) = 1\] and \[\cos \left( {{{90}^ \circ }} \right) = 1\], on substituting the values in equation (3) we have
\[ \Rightarrow \,\,\,\dfrac{{\tan \left( {A + B} \right) + \tan \left( C \right)}}{{1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right)}} = \dfrac{1}{0}\]
On equating the denominators of LHS and RHS, then
\[ \Rightarrow \,\,\,1 - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = 0\]
Subtract 1 on both the sides, then
\[ \Rightarrow \,\,\, - \tan \left( {A + B} \right) \cdot \tan \left( C \right) = - 1\]
Cancelling the ‘\[ - \,\,ve\]‘ sign on both sides, we get
\[ \Rightarrow \,\,\,\tan \left( {A + B} \right) \cdot \tan \left( C \right) = 1\]
Again, by the sum identity of tangent ratio
\[ \Rightarrow \,\,\,\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}} \right] \cdot \tan \left( C \right) = 1\]
Multiply both side by \[1 - \tan A \cdot \tan B\], then
\[ \Rightarrow \,\,\,\left( {\tan A + \tan B} \right) \cdot \tan C = 1 - \tan A \cdot \tan B\]
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C = 1 - \tan A \cdot \tan B\]
Add ‘\[\tan A \cdot \tan B\]’ on both side, we get
\[ \Rightarrow \,\,\,\tan A \cdot \tan C + \tan B \cdot \tan C + \tan A \cdot \tan B = 1\]
Or
\[\therefore \,\,\,\,\,\,\tan A \cdot \tan B + \tan B \cdot \tan C + \tan C \cdot \tan A = 1\].
Hence, the required value is 1.
So, the correct answer is “Option B”.
Note: When the question is based on trigonometric function, we must know about the definitions of all six trigonometric ratios and value of their standard angles. Remember all the basic formulas like trigonometric identity, half and double angle formula, addition and difference identity of trigonometric function and transformation formulas.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

