
If \[a + b + c = 1\], \[{a^2} + {b^2} + {c^2} = 21\], \[abc = 8\] . Find the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\] .
Answer
504.9k+ views
Hint: In this question, we have three algebraic equations.
We have been asked to find out the value of the given expression.
We have to first multiply the factors with each other. Then putting the given values from the equations given, we will get a shorter form. After that we will use one algebraic formula and again putting the values, we will get the required value.
Formula used: Algebraic formula,
\[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Complete step-by-step solution:
It is given that, \[a + b + c = 1\], \[{a^2} + {b^2} + {c^2} = 21\], \[abc = 8\].
We need to find out the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\].
Here we have,
\[a + b + c = 1\] ……………...… (i)
\[{a^2} + {b^2} + {c^2} = 21\] ……………..… (ii)
\[abc = 8\] …………..…. (iii)
Now the required expression is,
\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
Multiplying the last two factors,
\[ \Rightarrow \left( {1 - a} \right)\left( {1 - c - b + bc} \right)\]
Multiplying all the factors,
\[ \Rightarrow 1 - c - b + bc - a + ac + ab - abc\]
Putting the values from (iii),
\[ \Rightarrow 1 - \left( {a + b + c} \right) + ab + bc + ac - 8\]
Putting the values from (i),
\[ \Rightarrow 1 - 1 + ab + bc + ac - 8\]
Simplifying we get,
\[ \Rightarrow \left( {ab + bc + ac} \right) - 8\]…………... (iv)
Again, we have, \[a + b + c = 1\]
Squaring both the sides we get,
\[{\left( {a + b + c} \right)^2} = {1^2}\]
\[\left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac = 1\]
Using the algebraic formula, \[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Putting the values from (ii) we get,
$\Rightarrow$\[21 + 2\left( {ab + bc + ac} \right) = 1\]
Rearranging the terms, we get,
$\Rightarrow$\[ab + bc + ac = \dfrac{{1 - 21}}{2}\]
Subtracting the terms, we get,
$\Rightarrow$\[ab + bc + ca = - \dfrac{{20}}{2}\]
Hence,
\[ab + bc + ac = - 10\]
Hence putting the values of \[ab + bc + ac = - 10\] in (iv), we get,
$\Rightarrow$\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
\[ \Rightarrow - 10 - 8 = - 18\]
Thus, \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right) = - 18\]
Hence, the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\] is \[ - 18\].
Note: Multiplication of two Binomials:
Suppose $\left( {a + b} \right)$ and $\left( {c + d} \right)$ are two binomials. By using the distributive law of multiplication, we may find their product as given below,
\[\left( {a + b} \right) \times \left( {c + d} \right)\]
First, we will multiply with each term on both brackets,
\[ \Rightarrow a \times \left( {c + d} \right) + b \times \left( {c + d} \right)\]
Simplifying we get,
\[ \Rightarrow \left( {a \times c + a \times d} \right) + \left( {b \times c + b \times d} \right)\]
Hence,
\[ \Rightarrow ac + ad + bc + bd\]
Algebraic expression:
In mathematics, an algebraic expression is an expression built up from integer constants, variables, and algebraic operations.
For example,
\[{x^2} + 6xy + 7\] is an algebraic expression where \[7\] is the integer constants and x and y are the variables, + is the algebraic operation.
We have been asked to find out the value of the given expression.
We have to first multiply the factors with each other. Then putting the given values from the equations given, we will get a shorter form. After that we will use one algebraic formula and again putting the values, we will get the required value.
Formula used: Algebraic formula,
\[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Complete step-by-step solution:
It is given that, \[a + b + c = 1\], \[{a^2} + {b^2} + {c^2} = 21\], \[abc = 8\].
We need to find out the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\].
Here we have,
\[a + b + c = 1\] ……………...… (i)
\[{a^2} + {b^2} + {c^2} = 21\] ……………..… (ii)
\[abc = 8\] …………..…. (iii)
Now the required expression is,
\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
Multiplying the last two factors,
\[ \Rightarrow \left( {1 - a} \right)\left( {1 - c - b + bc} \right)\]
Multiplying all the factors,
\[ \Rightarrow 1 - c - b + bc - a + ac + ab - abc\]
Putting the values from (iii),
\[ \Rightarrow 1 - \left( {a + b + c} \right) + ab + bc + ac - 8\]
Putting the values from (i),
\[ \Rightarrow 1 - 1 + ab + bc + ac - 8\]
Simplifying we get,
\[ \Rightarrow \left( {ab + bc + ac} \right) - 8\]…………... (iv)
Again, we have, \[a + b + c = 1\]
Squaring both the sides we get,
\[{\left( {a + b + c} \right)^2} = {1^2}\]
\[\left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac = 1\]
Using the algebraic formula, \[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Putting the values from (ii) we get,
$\Rightarrow$\[21 + 2\left( {ab + bc + ac} \right) = 1\]
Rearranging the terms, we get,
$\Rightarrow$\[ab + bc + ac = \dfrac{{1 - 21}}{2}\]
Subtracting the terms, we get,
$\Rightarrow$\[ab + bc + ca = - \dfrac{{20}}{2}\]
Hence,
\[ab + bc + ac = - 10\]
Hence putting the values of \[ab + bc + ac = - 10\] in (iv), we get,
$\Rightarrow$\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
\[ \Rightarrow - 10 - 8 = - 18\]
Thus, \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right) = - 18\]
Hence, the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\] is \[ - 18\].
Note: Multiplication of two Binomials:
Suppose $\left( {a + b} \right)$ and $\left( {c + d} \right)$ are two binomials. By using the distributive law of multiplication, we may find their product as given below,
\[\left( {a + b} \right) \times \left( {c + d} \right)\]
First, we will multiply with each term on both brackets,
\[ \Rightarrow a \times \left( {c + d} \right) + b \times \left( {c + d} \right)\]
Simplifying we get,
\[ \Rightarrow \left( {a \times c + a \times d} \right) + \left( {b \times c + b \times d} \right)\]
Hence,
\[ \Rightarrow ac + ad + bc + bd\]
Algebraic expression:
In mathematics, an algebraic expression is an expression built up from integer constants, variables, and algebraic operations.
For example,
\[{x^2} + 6xy + 7\] is an algebraic expression where \[7\] is the integer constants and x and y are the variables, + is the algebraic operation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

In which of the following the direction of ocean currents class 9 social science CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
