
If \[a + b + c = 1\], \[{a^2} + {b^2} + {c^2} = 21\], \[abc = 8\] . Find the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\] .
Answer
566.4k+ views
Hint: In this question, we have three algebraic equations.
We have been asked to find out the value of the given expression.
We have to first multiply the factors with each other. Then putting the given values from the equations given, we will get a shorter form. After that we will use one algebraic formula and again putting the values, we will get the required value.
Formula used: Algebraic formula,
\[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Complete step-by-step solution:
It is given that, \[a + b + c = 1\], \[{a^2} + {b^2} + {c^2} = 21\], \[abc = 8\].
We need to find out the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\].
Here we have,
\[a + b + c = 1\] ……………...… (i)
\[{a^2} + {b^2} + {c^2} = 21\] ……………..… (ii)
\[abc = 8\] …………..…. (iii)
Now the required expression is,
\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
Multiplying the last two factors,
\[ \Rightarrow \left( {1 - a} \right)\left( {1 - c - b + bc} \right)\]
Multiplying all the factors,
\[ \Rightarrow 1 - c - b + bc - a + ac + ab - abc\]
Putting the values from (iii),
\[ \Rightarrow 1 - \left( {a + b + c} \right) + ab + bc + ac - 8\]
Putting the values from (i),
\[ \Rightarrow 1 - 1 + ab + bc + ac - 8\]
Simplifying we get,
\[ \Rightarrow \left( {ab + bc + ac} \right) - 8\]…………... (iv)
Again, we have, \[a + b + c = 1\]
Squaring both the sides we get,
\[{\left( {a + b + c} \right)^2} = {1^2}\]
\[\left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac = 1\]
Using the algebraic formula, \[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Putting the values from (ii) we get,
$\Rightarrow$\[21 + 2\left( {ab + bc + ac} \right) = 1\]
Rearranging the terms, we get,
$\Rightarrow$\[ab + bc + ac = \dfrac{{1 - 21}}{2}\]
Subtracting the terms, we get,
$\Rightarrow$\[ab + bc + ca = - \dfrac{{20}}{2}\]
Hence,
\[ab + bc + ac = - 10\]
Hence putting the values of \[ab + bc + ac = - 10\] in (iv), we get,
$\Rightarrow$\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
\[ \Rightarrow - 10 - 8 = - 18\]
Thus, \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right) = - 18\]
Hence, the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\] is \[ - 18\].
Note: Multiplication of two Binomials:
Suppose $\left( {a + b} \right)$ and $\left( {c + d} \right)$ are two binomials. By using the distributive law of multiplication, we may find their product as given below,
\[\left( {a + b} \right) \times \left( {c + d} \right)\]
First, we will multiply with each term on both brackets,
\[ \Rightarrow a \times \left( {c + d} \right) + b \times \left( {c + d} \right)\]
Simplifying we get,
\[ \Rightarrow \left( {a \times c + a \times d} \right) + \left( {b \times c + b \times d} \right)\]
Hence,
\[ \Rightarrow ac + ad + bc + bd\]
Algebraic expression:
In mathematics, an algebraic expression is an expression built up from integer constants, variables, and algebraic operations.
For example,
\[{x^2} + 6xy + 7\] is an algebraic expression where \[7\] is the integer constants and x and y are the variables, + is the algebraic operation.
We have been asked to find out the value of the given expression.
We have to first multiply the factors with each other. Then putting the given values from the equations given, we will get a shorter form. After that we will use one algebraic formula and again putting the values, we will get the required value.
Formula used: Algebraic formula,
\[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Complete step-by-step solution:
It is given that, \[a + b + c = 1\], \[{a^2} + {b^2} + {c^2} = 21\], \[abc = 8\].
We need to find out the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\].
Here we have,
\[a + b + c = 1\] ……………...… (i)
\[{a^2} + {b^2} + {c^2} = 21\] ……………..… (ii)
\[abc = 8\] …………..…. (iii)
Now the required expression is,
\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
Multiplying the last two factors,
\[ \Rightarrow \left( {1 - a} \right)\left( {1 - c - b + bc} \right)\]
Multiplying all the factors,
\[ \Rightarrow 1 - c - b + bc - a + ac + ab - abc\]
Putting the values from (iii),
\[ \Rightarrow 1 - \left( {a + b + c} \right) + ab + bc + ac - 8\]
Putting the values from (i),
\[ \Rightarrow 1 - 1 + ab + bc + ac - 8\]
Simplifying we get,
\[ \Rightarrow \left( {ab + bc + ac} \right) - 8\]…………... (iv)
Again, we have, \[a + b + c = 1\]
Squaring both the sides we get,
\[{\left( {a + b + c} \right)^2} = {1^2}\]
\[\left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac = 1\]
Using the algebraic formula, \[{\left( {a + b + c} \right)^2} = \left( {{a^2} + {b^2} + {c^2}} \right) + 2ab + 2bc + 2ac\]
Putting the values from (ii) we get,
$\Rightarrow$\[21 + 2\left( {ab + bc + ac} \right) = 1\]
Rearranging the terms, we get,
$\Rightarrow$\[ab + bc + ac = \dfrac{{1 - 21}}{2}\]
Subtracting the terms, we get,
$\Rightarrow$\[ab + bc + ca = - \dfrac{{20}}{2}\]
Hence,
\[ab + bc + ac = - 10\]
Hence putting the values of \[ab + bc + ac = - 10\] in (iv), we get,
$\Rightarrow$\[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\]
\[ \Rightarrow - 10 - 8 = - 18\]
Thus, \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right) = - 18\]
Hence, the value of \[\left( {1 - a} \right)\left( {1 - b} \right)\left( {1 - c} \right)\] is \[ - 18\].
Note: Multiplication of two Binomials:
Suppose $\left( {a + b} \right)$ and $\left( {c + d} \right)$ are two binomials. By using the distributive law of multiplication, we may find their product as given below,
\[\left( {a + b} \right) \times \left( {c + d} \right)\]
First, we will multiply with each term on both brackets,
\[ \Rightarrow a \times \left( {c + d} \right) + b \times \left( {c + d} \right)\]
Simplifying we get,
\[ \Rightarrow \left( {a \times c + a \times d} \right) + \left( {b \times c + b \times d} \right)\]
Hence,
\[ \Rightarrow ac + ad + bc + bd\]
Algebraic expression:
In mathematics, an algebraic expression is an expression built up from integer constants, variables, and algebraic operations.
For example,
\[{x^2} + 6xy + 7\] is an algebraic expression where \[7\] is the integer constants and x and y are the variables, + is the algebraic operation.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

