
If A + B + C + D = 2π, then prove the trigonometric equation:
sin A – sin B + sin C – sin D = $ - 4{\text{ cos}}\dfrac{{{\text{A + B}}}}{2}{\text{ sin}}\dfrac{{{\text{A + C}}}}{2}{\text{ cos}}\dfrac{{{\text{A + D}}}}{2}$
A. True
B. False
Answer
602.4k+ views
Hint: In order to solve the equation we start by solving the LHS and make it equal to the RHS. We use the identity of sinA ± sinB and use the given, A + B + C + D = 2π to simplify the equation further.
Complete step-by-step answer:
Given Data, A + B + C + D = 2π
$
\Rightarrow \dfrac{{\text{A}}}{2} + \dfrac{{\text{B}}}{2} + \dfrac{{\text{C}}}{2} + \dfrac{{\text{D}}}{2} = \pi \\
\Rightarrow \dfrac{{{\text{A + B}}}}{2} = \pi - \dfrac{{{\text{C + D}}}}{2} \\
$
Now, LHS = sin A – sin B + sin C – sin D
We know the formula for sinx – siny =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, using this in the equation, we get
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{{\text{C + D}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
From given, A+B = 2π-(C+D), also we know cos (π-θ) = -cos θ
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{2\pi {\text{ - }}\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - 2cos}}\left( {\dfrac{{\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)} \right]$
Now, ${\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$is again in the form of sin x – sin y =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, applying the formula we get
$
{\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{2cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right)} \right] \\
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right) \\
$
Using A + B + C + D = 2π, we convert the terms inside the function as,
$
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C - 2}}\pi {\text{ + A + C}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D - 2}}\pi {\text{ + A + D}}}}{4}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C}}}}{2} - \dfrac{\pi }{2}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D}}}}{2} - \dfrac{\pi }{2}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( -(\dfrac{\pi }{2}-{\dfrac{{{\text{A + C}}}}{2})} \right) \times {\text{sin}}\left( -( \dfrac{\pi }{2}-{\dfrac{{{\text{A + D}}}}{2})} \right) \\
$
Now we know sin (-x) = -sin x ,cos (-x) = cos x ,cos (90°-x) = sin x and sin (90°-x) = cos x, then equation becomes
$ = - {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A + C}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + D}}}}{2}} \right)$
= RHS, hence proved.
Hence the equation sin A – sin B + sin C – sin D = $ - 4{\text{ cos}}\dfrac{{{\text{A + B}}}}{2}{\text{ sin}}\dfrac{{{\text{A + C}}}}{2}{\text{ cos}}\dfrac{{{\text{A + D}}}}{2}$ holds True, Option A is the correct answer.
Note: In order to solve this type of questions the key is to express the given terms in the form of a difference between π and the remaining angle. Also, we express the sine function in terms cosine function and vice versa to solve the equation. Adequate knowledge in trigonometric formulae and identities of sine and cosine functions is necessary.
Complete step-by-step answer:
Given Data, A + B + C + D = 2π
$
\Rightarrow \dfrac{{\text{A}}}{2} + \dfrac{{\text{B}}}{2} + \dfrac{{\text{C}}}{2} + \dfrac{{\text{D}}}{2} = \pi \\
\Rightarrow \dfrac{{{\text{A + B}}}}{2} = \pi - \dfrac{{{\text{C + D}}}}{2} \\
$
Now, LHS = sin A – sin B + sin C – sin D
We know the formula for sinx – siny =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, using this in the equation, we get
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{{\text{C + D}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
From given, A+B = 2π-(C+D), also we know cos (π-θ) = -cos θ
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{2\pi {\text{ - }}\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - 2cos}}\left( {\dfrac{{\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)} \right]$
Now, ${\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$is again in the form of sin x – sin y =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, applying the formula we get
$
{\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{2cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right)} \right] \\
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right) \\
$
Using A + B + C + D = 2π, we convert the terms inside the function as,
$
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C - 2}}\pi {\text{ + A + C}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D - 2}}\pi {\text{ + A + D}}}}{4}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C}}}}{2} - \dfrac{\pi }{2}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D}}}}{2} - \dfrac{\pi }{2}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( -(\dfrac{\pi }{2}-{\dfrac{{{\text{A + C}}}}{2})} \right) \times {\text{sin}}\left( -( \dfrac{\pi }{2}-{\dfrac{{{\text{A + D}}}}{2})} \right) \\
$
Now we know sin (-x) = -sin x ,cos (-x) = cos x ,cos (90°-x) = sin x and sin (90°-x) = cos x, then equation becomes
$ = - {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A + C}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + D}}}}{2}} \right)$
= RHS, hence proved.
Hence the equation sin A – sin B + sin C – sin D = $ - 4{\text{ cos}}\dfrac{{{\text{A + B}}}}{2}{\text{ sin}}\dfrac{{{\text{A + C}}}}{2}{\text{ cos}}\dfrac{{{\text{A + D}}}}{2}$ holds True, Option A is the correct answer.
Note: In order to solve this type of questions the key is to express the given terms in the form of a difference between π and the remaining angle. Also, we express the sine function in terms cosine function and vice versa to solve the equation. Adequate knowledge in trigonometric formulae and identities of sine and cosine functions is necessary.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

