
If A + B + C + D = 2π, then prove the trigonometric equation:
sin A – sin B + sin C – sin D = $ - 4{\text{ cos}}\dfrac{{{\text{A + B}}}}{2}{\text{ sin}}\dfrac{{{\text{A + C}}}}{2}{\text{ cos}}\dfrac{{{\text{A + D}}}}{2}$
A. True
B. False
Answer
601.5k+ views
Hint: In order to solve the equation we start by solving the LHS and make it equal to the RHS. We use the identity of sinA ± sinB and use the given, A + B + C + D = 2π to simplify the equation further.
Complete step-by-step answer:
Given Data, A + B + C + D = 2π
$
\Rightarrow \dfrac{{\text{A}}}{2} + \dfrac{{\text{B}}}{2} + \dfrac{{\text{C}}}{2} + \dfrac{{\text{D}}}{2} = \pi \\
\Rightarrow \dfrac{{{\text{A + B}}}}{2} = \pi - \dfrac{{{\text{C + D}}}}{2} \\
$
Now, LHS = sin A – sin B + sin C – sin D
We know the formula for sinx – siny =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, using this in the equation, we get
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{{\text{C + D}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
From given, A+B = 2π-(C+D), also we know cos (π-θ) = -cos θ
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{2\pi {\text{ - }}\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - 2cos}}\left( {\dfrac{{\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)} \right]$
Now, ${\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$is again in the form of sin x – sin y =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, applying the formula we get
$
{\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{2cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right)} \right] \\
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right) \\
$
Using A + B + C + D = 2π, we convert the terms inside the function as,
$
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C - 2}}\pi {\text{ + A + C}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D - 2}}\pi {\text{ + A + D}}}}{4}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C}}}}{2} - \dfrac{\pi }{2}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D}}}}{2} - \dfrac{\pi }{2}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( -(\dfrac{\pi }{2}-{\dfrac{{{\text{A + C}}}}{2})} \right) \times {\text{sin}}\left( -( \dfrac{\pi }{2}-{\dfrac{{{\text{A + D}}}}{2})} \right) \\
$
Now we know sin (-x) = -sin x ,cos (-x) = cos x ,cos (90°-x) = sin x and sin (90°-x) = cos x, then equation becomes
$ = - {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A + C}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + D}}}}{2}} \right)$
= RHS, hence proved.
Hence the equation sin A – sin B + sin C – sin D = $ - 4{\text{ cos}}\dfrac{{{\text{A + B}}}}{2}{\text{ sin}}\dfrac{{{\text{A + C}}}}{2}{\text{ cos}}\dfrac{{{\text{A + D}}}}{2}$ holds True, Option A is the correct answer.
Note: In order to solve this type of questions the key is to express the given terms in the form of a difference between π and the remaining angle. Also, we express the sine function in terms cosine function and vice versa to solve the equation. Adequate knowledge in trigonometric formulae and identities of sine and cosine functions is necessary.
Complete step-by-step answer:
Given Data, A + B + C + D = 2π
$
\Rightarrow \dfrac{{\text{A}}}{2} + \dfrac{{\text{B}}}{2} + \dfrac{{\text{C}}}{2} + \dfrac{{\text{D}}}{2} = \pi \\
\Rightarrow \dfrac{{{\text{A + B}}}}{2} = \pi - \dfrac{{{\text{C + D}}}}{2} \\
$
Now, LHS = sin A – sin B + sin C – sin D
We know the formula for sinx – siny =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, using this in the equation, we get
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{{\text{C + D}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
From given, A+B = 2π-(C+D), also we know cos (π-θ) = -cos θ
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right) + {\text{2cos}}\left( {\dfrac{{2\pi {\text{ - }}\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - 2cos}}\left( {\dfrac{{\left( {{\text{A + B}}} \right)}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$
${\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)} \right]$
Now, ${\text{sin}}\left( {\dfrac{{{\text{A - B}}}}{2}} \right){\text{ - sin}}\left( {\dfrac{{{\text{C - D}}}}{2}} \right)$is again in the form of sin x – sin y =$2\cos \left( {\dfrac{{{\text{x + y}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{x - y}}}}{2}} \right)$, applying the formula we get
$
{\text{ = 2cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right)\left[ {{\text{2cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right)} \right] \\
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A - B + C - D}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A - B - C + D}}}}{4}} \right) \\
$
Using A + B + C + D = 2π, we convert the terms inside the function as,
$
{\text{ = 4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C - 2}}\pi {\text{ + A + C}}}}{4}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D - 2}}\pi {\text{ + A + D}}}}{4}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + C}}}}{2} - \dfrac{\pi }{2}} \right) \times {\text{sin}}\left( {\dfrac{{{\text{A + D}}}}{2} - \dfrac{\pi }{2}} \right) \\
= {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{cos}}\left( -(\dfrac{\pi }{2}-{\dfrac{{{\text{A + C}}}}{2})} \right) \times {\text{sin}}\left( -( \dfrac{\pi }{2}-{\dfrac{{{\text{A + D}}}}{2})} \right) \\
$
Now we know sin (-x) = -sin x ,cos (-x) = cos x ,cos (90°-x) = sin x and sin (90°-x) = cos x, then equation becomes
$ = - {\text{4cos}}\left( {\dfrac{{{\text{A + B}}}}{2}} \right){\text{sin}}\left( {\dfrac{{{\text{A + C}}}}{2}} \right){\text{cos}}\left( {\dfrac{{{\text{A + D}}}}{2}} \right)$
= RHS, hence proved.
Hence the equation sin A – sin B + sin C – sin D = $ - 4{\text{ cos}}\dfrac{{{\text{A + B}}}}{2}{\text{ sin}}\dfrac{{{\text{A + C}}}}{2}{\text{ cos}}\dfrac{{{\text{A + D}}}}{2}$ holds True, Option A is the correct answer.
Note: In order to solve this type of questions the key is to express the given terms in the form of a difference between π and the remaining angle. Also, we express the sine function in terms cosine function and vice versa to solve the equation. Adequate knowledge in trigonometric formulae and identities of sine and cosine functions is necessary.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

