
If $A+B+C=\pi $ , prove that $\left| \begin{matrix}
{{\sin }^{2}}A & \cot A & 1 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}$
Answer
574.8k+ views
Hint: To solve this question we will first using elementary row operation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$ and ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$ then we will us trigonometric identities which are $\cot x=\dfrac{\cos x}{\sin x}$, $\sin A+\operatorname{sinB}=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$, $\sin A-\operatorname{sinB}=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)$ and algebraic identity ${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$to solve the determinant. At last we will expand determinant along column ${{C}_{3}}$ to obtain a solution.
Complete step-by-step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, in question it given that, If $A+B+C=\pi $and asked to prove that $\left| \begin{matrix}
{{\sin }^{2}}A & \cot A & 1 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}$.
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$, we get
\[\left| \begin{matrix}
{{\sin }^{2}}A-{{\sin }^{2}}B & \cot A-\cot B & 0 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
Now, using, using elementary row operation ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$, we get
\[\left| \begin{matrix}
{{\sin }^{2}}A-{{\sin }^{2}}B & \cot A-\cot B & 0 \\
{{\sin }^{2}}B-{{\sin }^{2}}C & \cot B-\cot C & 0 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
Now, we know that $\cot x=\dfrac{\cos x}{\sin x}$ , so
\[\left| \begin{matrix}
{{\sin }^{2}}A-{{\sin }^{2}}B & \dfrac{\operatorname{cosA}}{\operatorname{sinA}}-\dfrac{\operatorname{cosB}}{\operatorname{sinB}} & 0 \\
{{\sin }^{2}}B-{{\sin }^{2}}C & \dfrac{\operatorname{cosB}}{\operatorname{sinB}}-\dfrac{\operatorname{cosC}}{\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
Also, we know that ${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$ , so
\[\left| \begin{matrix}
(\sin A-\sin B)(\sin A+\sin B) & \dfrac{\operatorname{cosA}}{\operatorname{sinA}}-\dfrac{\operatorname{cosB}}{\operatorname{sinB}} & 0 \\
(\operatorname{sinB}-\operatorname{sinC})(\operatorname{sinB}+\operatorname{sinC}) & \dfrac{\operatorname{cosB}}{\operatorname{sinB}}-\dfrac{\operatorname{cosC}}{\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
On simplifying, we get
\[\left| \begin{matrix}
(\sin A-\sin B)(\sin A+\sin B) & \dfrac{\operatorname{cosA}\operatorname{sinB}-\operatorname{cosB}\operatorname{sinA}}{\operatorname{sinAsinB}} & 0 \\
(\operatorname{sinB}-\operatorname{sinC})(\operatorname{sinB}+\operatorname{sinC}) & \dfrac{\operatorname{cosB}\operatorname{sinC}-\operatorname{cosCsinB}}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
We know that, $\sin A+\operatorname{sinB}=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
And, $\sin A-\operatorname{sinB}=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)$
So, \[\left| \begin{matrix}
2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)\cdot 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) & \dfrac{\operatorname{cosA}\operatorname{sinB}-\operatorname{cosB}\operatorname{sinA}}{\operatorname{sinAsinB}} & 0 \\
2\sin \left( \dfrac{B-C}{2} \right)\cos \left( \dfrac{B+C}{2} \right)\cdot 2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) & \dfrac{\operatorname{cosB}\operatorname{sinC}-\operatorname{cosCsinB}}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
Now, we know that $\sin (A-B)=\sin A\cos B-\cos A\sin B$ , so
\[\left| \begin{matrix}
2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)\cdot 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) & \dfrac{\sin (A-B)}{\operatorname{sinAsinB}} & 0 \\
2\sin \left( \dfrac{B-C}{2} \right)\cos \left( \dfrac{B+C}{2} \right)\cdot 2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) & \dfrac{\sin (B-C)}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
On simplifying, we get
\[\left| \begin{matrix}
\sin (A+B)\cdot \sin (A-B) & \dfrac{\sin (A-B)}{\operatorname{sinAsinB}} & 0 \\
\sin (B+C)\cdot \sin (B-C) & \dfrac{\sin (B-C)}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
As, $A+B+C=\pi $
Or, $A+B=\pi -C$
Or, $B+C=\pi -A$
We get,
\[\left| \begin{matrix}
\operatorname{sinC}\cdot \sin (A-B) & \dfrac{\sin (A-B)}{\operatorname{sinAsinB}} & 0 \\
\operatorname{sinA}\cdot \sin (B-C) & \dfrac{\sin (B-C)}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
Taking, \[\sin (A-B)\]and \[\sin (B-C)\]common from ${{R}_{1}}$and ${{R}_{2}}$, we get
\[\sin (A-B)\cdot \sin (B-C)\left| \begin{matrix}
\operatorname{sinC} & \dfrac{1}{\operatorname{sinAsinB}} & 0 \\
\operatorname{sinA} & \dfrac{1}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
On expanding along column ${{C}_{3}}$,
\[\sin (A-B)\cdot \sin (B-C)\left\{ 0\left( \dfrac{\cos C\operatorname{sinA}}{\sin C}-\dfrac{{{\sin }^{2}}C}{\operatorname{sinB}\operatorname{sinC}} \right)-0\left( \dfrac{\cos C\operatorname{sinC}}{\sin C}-\dfrac{{{\sin }^{2}}C}{\operatorname{sinA}\operatorname{sinB}} \right)+1\left( \dfrac{\sin C}{\operatorname{sinC}\operatorname{sinB}}-\dfrac{\operatorname{sinA}}{\operatorname{sinA}\operatorname{sinB}} \right) \right\}\]on simplifying, we get
\[\sin (A-B)\cdot \sin (B-C)\left\{ \left( \dfrac{1}{\operatorname{sinB}}-\dfrac{1}{\operatorname{sinB}} \right) \right\}\]
On solving we get
$\left| \begin{matrix}
{{\sin }^{2}}A & \cot A & 1 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}$
Hence, proved.
Note: In such types of questions multiple concepts are used. To simplify the determinant use elementary operations such that at least two entries in a row or column become 0. This makes calculation easier. All the trigonometric formulas need to be remembered. Also, if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$. Try to avoid calculation mistakes.
Complete step-by-step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, in question it given that, If $A+B+C=\pi $and asked to prove that $\left| \begin{matrix}
{{\sin }^{2}}A & \cot A & 1 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}$.
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$, we get
\[\left| \begin{matrix}
{{\sin }^{2}}A-{{\sin }^{2}}B & \cot A-\cot B & 0 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
Now, using, using elementary row operation ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$, we get
\[\left| \begin{matrix}
{{\sin }^{2}}A-{{\sin }^{2}}B & \cot A-\cot B & 0 \\
{{\sin }^{2}}B-{{\sin }^{2}}C & \cot B-\cot C & 0 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
Now, we know that $\cot x=\dfrac{\cos x}{\sin x}$ , so
\[\left| \begin{matrix}
{{\sin }^{2}}A-{{\sin }^{2}}B & \dfrac{\operatorname{cosA}}{\operatorname{sinA}}-\dfrac{\operatorname{cosB}}{\operatorname{sinB}} & 0 \\
{{\sin }^{2}}B-{{\sin }^{2}}C & \dfrac{\operatorname{cosB}}{\operatorname{sinB}}-\dfrac{\operatorname{cosC}}{\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
Also, we know that ${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$ , so
\[\left| \begin{matrix}
(\sin A-\sin B)(\sin A+\sin B) & \dfrac{\operatorname{cosA}}{\operatorname{sinA}}-\dfrac{\operatorname{cosB}}{\operatorname{sinB}} & 0 \\
(\operatorname{sinB}-\operatorname{sinC})(\operatorname{sinB}+\operatorname{sinC}) & \dfrac{\operatorname{cosB}}{\operatorname{sinB}}-\dfrac{\operatorname{cosC}}{\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}\]
On simplifying, we get
\[\left| \begin{matrix}
(\sin A-\sin B)(\sin A+\sin B) & \dfrac{\operatorname{cosA}\operatorname{sinB}-\operatorname{cosB}\operatorname{sinA}}{\operatorname{sinAsinB}} & 0 \\
(\operatorname{sinB}-\operatorname{sinC})(\operatorname{sinB}+\operatorname{sinC}) & \dfrac{\operatorname{cosB}\operatorname{sinC}-\operatorname{cosCsinB}}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
We know that, $\sin A+\operatorname{sinB}=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
And, $\sin A-\operatorname{sinB}=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)$
So, \[\left| \begin{matrix}
2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)\cdot 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) & \dfrac{\operatorname{cosA}\operatorname{sinB}-\operatorname{cosB}\operatorname{sinA}}{\operatorname{sinAsinB}} & 0 \\
2\sin \left( \dfrac{B-C}{2} \right)\cos \left( \dfrac{B+C}{2} \right)\cdot 2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) & \dfrac{\operatorname{cosB}\operatorname{sinC}-\operatorname{cosCsinB}}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
Now, we know that $\sin (A-B)=\sin A\cos B-\cos A\sin B$ , so
\[\left| \begin{matrix}
2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)\cdot 2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) & \dfrac{\sin (A-B)}{\operatorname{sinAsinB}} & 0 \\
2\sin \left( \dfrac{B-C}{2} \right)\cos \left( \dfrac{B+C}{2} \right)\cdot 2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right) & \dfrac{\sin (B-C)}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
On simplifying, we get
\[\left| \begin{matrix}
\sin (A+B)\cdot \sin (A-B) & \dfrac{\sin (A-B)}{\operatorname{sinAsinB}} & 0 \\
\sin (B+C)\cdot \sin (B-C) & \dfrac{\sin (B-C)}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
As, $A+B+C=\pi $
Or, $A+B=\pi -C$
Or, $B+C=\pi -A$
We get,
\[\left| \begin{matrix}
\operatorname{sinC}\cdot \sin (A-B) & \dfrac{\sin (A-B)}{\operatorname{sinAsinB}} & 0 \\
\operatorname{sinA}\cdot \sin (B-C) & \dfrac{\sin (B-C)}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
Taking, \[\sin (A-B)\]and \[\sin (B-C)\]common from ${{R}_{1}}$and ${{R}_{2}}$, we get
\[\sin (A-B)\cdot \sin (B-C)\left| \begin{matrix}
\operatorname{sinC} & \dfrac{1}{\operatorname{sinAsinB}} & 0 \\
\operatorname{sinA} & \dfrac{1}{\operatorname{sinB}\operatorname{sinC}} & 0 \\
{{\sin }^{2}}C & \dfrac{\cos C}{\sin C} & 1 \\
\end{matrix} \right|=\text{0}\]
On expanding along column ${{C}_{3}}$,
\[\sin (A-B)\cdot \sin (B-C)\left\{ 0\left( \dfrac{\cos C\operatorname{sinA}}{\sin C}-\dfrac{{{\sin }^{2}}C}{\operatorname{sinB}\operatorname{sinC}} \right)-0\left( \dfrac{\cos C\operatorname{sinC}}{\sin C}-\dfrac{{{\sin }^{2}}C}{\operatorname{sinA}\operatorname{sinB}} \right)+1\left( \dfrac{\sin C}{\operatorname{sinC}\operatorname{sinB}}-\dfrac{\operatorname{sinA}}{\operatorname{sinA}\operatorname{sinB}} \right) \right\}\]on simplifying, we get
\[\sin (A-B)\cdot \sin (B-C)\left\{ \left( \dfrac{1}{\operatorname{sinB}}-\dfrac{1}{\operatorname{sinB}} \right) \right\}\]
On solving we get
$\left| \begin{matrix}
{{\sin }^{2}}A & \cot A & 1 \\
{{\sin }^{2}}B & \cot B & 1 \\
{{\sin }^{2}}C & \cot C & 1 \\
\end{matrix} \right|=\text{0}$
Hence, proved.
Note: In such types of questions multiple concepts are used. To simplify the determinant use elementary operations such that at least two entries in a row or column become 0. This makes calculation easier. All the trigonometric formulas need to be remembered. Also, if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$. Try to avoid calculation mistakes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

