
If \[8f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5\]and \[y = {x^2}f(x)\], then what is \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\]?
A. \[0\]
B. \[\dfrac{1}{{14}}\]
C. \[ - \dfrac{1}{{14}}\]
D. \[1\]
Answer
490.2k+ views
Hint: Firstly, we will find the value of \[f(x)\].For that we will first, replace \[x\] by \[\dfrac{1}{x}\] in the given equation \[8f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5\] and then we will obtain two equations in terms of \[f(x)\] and \[f\left( {\dfrac{1}{x}} \right)\]. We will then solve the two equations for \[f(x)\]. After solving for \[f(x)\], we will put that value of \[f(x)\] in the given condition \[y = {x^2}f(x)\] to obtain the value of \[y\]. Now, we will get the value of \[y\] in terms of \[x\]i.e. we will get \[y\] as a function of \[x\]. After obtaining the value of \[y\] in terms of \[x\], we will differentiate the value of \[y\]we will obtain in terms of \[x\]with respect to \[x\]. Now, as we have to find the value at \[x = - 1\], we will substitute \[x = - 1\]in the value of \[\dfrac{{dy}}{{dx}}\] obtained.
Complete step by step answer:
We are given,
\[8f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5 - - - - - - (1)\]
Now, Replacing \[x\] by \[\dfrac{1}{x}\] in (1), we get
\[ \Rightarrow 8f\left( {\dfrac{1}{x}} \right) + 6f(x) = \dfrac{1}{x} + 5 - - - - - (2)\]
Multiplying first equation by 8,
(1) \[ \times 8 \Rightarrow 8 \times \left[ {\left( {8f(x) + 6f\left( {\dfrac{1}{x}} \right)} \right) = x + 5} \right]\]
\[ = 64f(x) + 48f\left( {\dfrac{1}{x}} \right) = 8x + 40 - - - - - (3)\]
Multiplying second equation by 6,
(2) \[ \times 6 \Rightarrow 6 \times \left[ {8f\left( {\dfrac{1}{x}} \right) + 6f(x) = \dfrac{1}{x} + 5} \right]\]
\[48f\left( {\dfrac{1}{x}} \right) + 36f(x) = \dfrac{6}{x} + 30 - - - - - (4)\]
Now, subtracting (4) from (3), we get
\[ \Rightarrow 64f(x) + 48f\left( {\dfrac{1}{x}} \right) - \left[ {48f\left( {\dfrac{1}{x}} \right) + 36f(x)} \right] = 8x + 40 - \left( {\dfrac{6}{x} + 30} \right)\]
Opening the brackets, we get
\[ \Rightarrow 64f(x) + 48f\left( {\dfrac{1}{x}} \right) - 48f\left( {\dfrac{1}{x}} \right) - 36f(x) = 8x + 40 - \dfrac{6}{x} - 30\]
Cancelling like terms with opposite signs, we get,
\[ \Rightarrow 28f(x) = 8x - \dfrac{6}{x} + 10\]
So, we get the function as,
\[f(x) = \dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)\]
Now, we have, \[f(x) = \dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)\]
Substituting the value of \[f(x)\]in \[y = {x^2}f(x)\], we get
\[ \Rightarrow y = {x^2}\left[ {\dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)} \right]\]
\[ \Rightarrow y = \dfrac{{{x^2}}}{{28}}\left[ {8x - \dfrac{6}{x} + 10} \right]\]
Multiplying \[{x^2}\]inside the bracket
\[ \Rightarrow y = \dfrac{1}{{28}}\left[ {{x^2}\left( {8x - \dfrac{6}{x} + 10} \right)} \right]\]
\[ \Rightarrow y = \dfrac{1}{{28}}\left( {8{x^3} - \dfrac{{6{x^2}}}{x} + 10{x^2}} \right)\]
Simplifying the expression, we get,
\[y = \dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)\]
Now, differentiating \[y = \dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)\] with respect to \[x\], we have
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)} \right)\]
Taking the constant out of differentiation,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {\dfrac{d}{{dx}}\left( {8{x^3} - 6x + 10{x^2}} \right)} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {\dfrac{d}{{dx}}8{x^3} - \dfrac{d}{{dx}}6x + \dfrac{d}{{dx}}10{x^2}} \right]\]
Using power rule of differentiation \[\dfrac{d}{{dx}}{x^n} = n \times {x^{n - 1}}\], we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {8 \times 3 \times {x^{3 - 1}} - 6 \times 1 \times {x^{1 - 1}} + 10 \times 2 \times {x^{2 - 1}}} \right]\]
As we know, \[{x^0} = 1\]. So,
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]\]
Hence, we have \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]\]
We have to find the value of \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\].
So, we will substitute \[x = - 1\]in \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]\]
Therefore, \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\]is
\[\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}\left[ {24{{( - 1)}^2} - 6 + 20( - 1)} \right]\]
We know, \[{(a)^2} = {( - a)^2} = {a^2}\]
\[\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}\left[ {24(1) - 6 - 20)} \right]\]
\[\Rightarrow \dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[24 - 6 - 20]\]
Solving the right side
\[\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[24 - 26]\]
\[\Rightarrow \dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[ - 2]\]
Simplifying further, we get
\[\therefore \dfrac{{dy}}{{dx}}{|_{x = - 1}} = - \dfrac{1}{{14}}\]
Hence, we get, \[\dfrac{{dy}}{{dx}}\] at \[x = - 1\]equals \[ - \dfrac{1}{{14}}\].
Hence, the correct option is C.
Note: We need to be very careful while finding \[f(x)\]. We must take care of the fact that we have to replace \[x\] by \[\dfrac{1}{x}\] in the whole equation and not just the left hand side. And, then keep in mind to solve for \[f(x)\] and \[f\left( {\dfrac{1}{x}} \right)\] from the obtained and the given equations. Also, we must remember to find the value of \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\] and not just leaving after finding the value of \[\dfrac{{dy}}{{dx}}\]. We must learn the formulas for differentiation very carefully otherwise we will not be able to solve the question.
Complete step by step answer:
We are given,
\[8f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5 - - - - - - (1)\]
Now, Replacing \[x\] by \[\dfrac{1}{x}\] in (1), we get
\[ \Rightarrow 8f\left( {\dfrac{1}{x}} \right) + 6f(x) = \dfrac{1}{x} + 5 - - - - - (2)\]
Multiplying first equation by 8,
(1) \[ \times 8 \Rightarrow 8 \times \left[ {\left( {8f(x) + 6f\left( {\dfrac{1}{x}} \right)} \right) = x + 5} \right]\]
\[ = 64f(x) + 48f\left( {\dfrac{1}{x}} \right) = 8x + 40 - - - - - (3)\]
Multiplying second equation by 6,
(2) \[ \times 6 \Rightarrow 6 \times \left[ {8f\left( {\dfrac{1}{x}} \right) + 6f(x) = \dfrac{1}{x} + 5} \right]\]
\[48f\left( {\dfrac{1}{x}} \right) + 36f(x) = \dfrac{6}{x} + 30 - - - - - (4)\]
Now, subtracting (4) from (3), we get
\[ \Rightarrow 64f(x) + 48f\left( {\dfrac{1}{x}} \right) - \left[ {48f\left( {\dfrac{1}{x}} \right) + 36f(x)} \right] = 8x + 40 - \left( {\dfrac{6}{x} + 30} \right)\]
Opening the brackets, we get
\[ \Rightarrow 64f(x) + 48f\left( {\dfrac{1}{x}} \right) - 48f\left( {\dfrac{1}{x}} \right) - 36f(x) = 8x + 40 - \dfrac{6}{x} - 30\]
Cancelling like terms with opposite signs, we get,
\[ \Rightarrow 28f(x) = 8x - \dfrac{6}{x} + 10\]
So, we get the function as,
\[f(x) = \dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)\]
Now, we have, \[f(x) = \dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)\]
Substituting the value of \[f(x)\]in \[y = {x^2}f(x)\], we get
\[ \Rightarrow y = {x^2}\left[ {\dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)} \right]\]
\[ \Rightarrow y = \dfrac{{{x^2}}}{{28}}\left[ {8x - \dfrac{6}{x} + 10} \right]\]
Multiplying \[{x^2}\]inside the bracket
\[ \Rightarrow y = \dfrac{1}{{28}}\left[ {{x^2}\left( {8x - \dfrac{6}{x} + 10} \right)} \right]\]
\[ \Rightarrow y = \dfrac{1}{{28}}\left( {8{x^3} - \dfrac{{6{x^2}}}{x} + 10{x^2}} \right)\]
Simplifying the expression, we get,
\[y = \dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)\]
Now, differentiating \[y = \dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)\] with respect to \[x\], we have
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)} \right)\]
Taking the constant out of differentiation,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {\dfrac{d}{{dx}}\left( {8{x^3} - 6x + 10{x^2}} \right)} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {\dfrac{d}{{dx}}8{x^3} - \dfrac{d}{{dx}}6x + \dfrac{d}{{dx}}10{x^2}} \right]\]
Using power rule of differentiation \[\dfrac{d}{{dx}}{x^n} = n \times {x^{n - 1}}\], we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {8 \times 3 \times {x^{3 - 1}} - 6 \times 1 \times {x^{1 - 1}} + 10 \times 2 \times {x^{2 - 1}}} \right]\]
As we know, \[{x^0} = 1\]. So,
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]\]
Hence, we have \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]\]
We have to find the value of \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\].
So, we will substitute \[x = - 1\]in \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]\]
Therefore, \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\]is
\[\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}\left[ {24{{( - 1)}^2} - 6 + 20( - 1)} \right]\]
We know, \[{(a)^2} = {( - a)^2} = {a^2}\]
\[\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}\left[ {24(1) - 6 - 20)} \right]\]
\[\Rightarrow \dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[24 - 6 - 20]\]
Solving the right side
\[\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[24 - 26]\]
\[\Rightarrow \dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[ - 2]\]
Simplifying further, we get
\[\therefore \dfrac{{dy}}{{dx}}{|_{x = - 1}} = - \dfrac{1}{{14}}\]
Hence, we get, \[\dfrac{{dy}}{{dx}}\] at \[x = - 1\]equals \[ - \dfrac{1}{{14}}\].
Hence, the correct option is C.
Note: We need to be very careful while finding \[f(x)\]. We must take care of the fact that we have to replace \[x\] by \[\dfrac{1}{x}\] in the whole equation and not just the left hand side. And, then keep in mind to solve for \[f(x)\] and \[f\left( {\dfrac{1}{x}} \right)\] from the obtained and the given equations. Also, we must remember to find the value of \[\dfrac{{dy}}{{dx}}\]at \[x = - 1\] and not just leaving after finding the value of \[\dfrac{{dy}}{{dx}}\]. We must learn the formulas for differentiation very carefully otherwise we will not be able to solve the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

