Questions & Answers

Question

Answers

A. $p + 1$

B. $p + 78$

C. $p + 79$

D. $p + 893$

E. $p + 894$

Answer
Verified

Let us compare $893 \times \left( {78 + 1} \right)$ with $a \times \left( {b + c} \right)$ then we can say that $a = 893,\;b = 78$ and $c = 1$.

Now we are going to use the left-distributive property of multiplication over addition which is given by $a \times \left( {b + c} \right) = \left( {a \times b} \right) + \left( {a \times c} \right)$ where $a,b$ and $c$ are real numbers. Therefore, $893 \times \left( {78 + 1} \right) = \left( {893 \times 78} \right) + \left( {893 \times 1} \right)\; \cdots \cdots \left( 2 \right)$

From $\left( 1 \right)$, we have $893 \times 78 = p$. Now we are using equation $\left( 1 \right)$ in $\left( 2 \right)$, we get $893 \times 79 = p + \left( {893 \times 1} \right)$

$ \Rightarrow 893 \times 79 = p + 893$

Therefore, if $893 \times 78 = p$ then $893 \times 79 = p + 893$.

Therefore, option D is correct.