If ${5^{56}}{\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }}$> 1, then x belongs to
A. (0, 49)
B. (49, 64)
C. (0, 64)
D. (49, 64)
Answer
Verified
504.6k+ views
Hint: Any number to the power of zero is equal to one. The square root of any rational number is always greater than or equal to zero. If the multiple of two numbers is less than zero then only one of the two numbers could be less than zero.
Complete step-by-step answer:
Given Data –
${5^{56}}{\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }}$> 1,
The given inequality is only true for x≥0.
The laws of exponents states that for a given number ‘a’
\[
{\text{1}}{\text{. }}{{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{\left( {{\text{m + n}}} \right)}} \\
2.\dfrac{{{{\text{a}}^{\text{m}}}}}{{{{\text{a}}^{\text{n}}}}} = {{\text{a}}^{\left( {{\text{m - n}}} \right)}} \\
\]
$
\Rightarrow {\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }} = \left( {\dfrac{{{1^{\text{x}}} \times {1^{\sqrt {\text{x}} }}}}{{{5^{\text{x}}} \times {5^{\sqrt {\text{x}} }}}}} \right) \\
\\
$
One to the power of anything equals to one itself.
$ \Rightarrow \left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right)$
Now our inequality looks like this,
$
{5^{56}}\left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right) > 1 \\
\Rightarrow {5^{56{\text{ - x - }}\sqrt {\text{x}} }} > 1 \\
$
1 can be expressed as ${5^0}$ (5 to the power of zero)
\[
\Rightarrow {5^{56 - {\text{x - }}\sqrt {\text{x}} }} > {5^0} \\
\Rightarrow 56 - {\text{x - }}\sqrt {\text{x}} > 0 \\
{\text{ }} \\
\]
\[56 - {\text{x - }}\sqrt {\text{x}} \]Can be expressed as \[{\text{56 - x + 7}}\sqrt {\text{x}} {\text{ - 8}}\sqrt {\text{x}} \]
\[
\Rightarrow 7\left( {\sqrt {\text{x}} + 8} \right) - \sqrt {\text{x}} \left( {\sqrt {\text{x}} + 8} \right) \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {7 - \sqrt {\text{x}} } \right) > 0 \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {\sqrt {\text{x}} - 7} \right) < 0 \\
\]
As \[\left( {\sqrt {\text{x}} + 8} \right)\]is positive for all rational numbers, that means
\[\left( {\sqrt {\text{x}} - 7} \right)\]Should be negative. (i.e. <0)
\[ \Rightarrow \sqrt {\text{x}} < 7\]
Squaring on both sides
\[
\Rightarrow {\text{x}} < 49 \\
\Rightarrow 0 \leqslant {\text{x < 49}} \\
\]
Hence x belongs to (0, 49) which makes Option A the correct answer.
Note –
In such types of questions first simplify the equation by bringing all the exponents of the same number together using the laws of exponents, then compare it as a whole to the other part of the inequality. Then simplify the equation accordingly and find out the factors if there are any in order to obtain the limits of the required number. Properties of rational numbers come in handy while solving these types of questions.
Complete step-by-step answer:
Given Data –
${5^{56}}{\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }}$> 1,
The given inequality is only true for x≥0.
The laws of exponents states that for a given number ‘a’
\[
{\text{1}}{\text{. }}{{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{\left( {{\text{m + n}}} \right)}} \\
2.\dfrac{{{{\text{a}}^{\text{m}}}}}{{{{\text{a}}^{\text{n}}}}} = {{\text{a}}^{\left( {{\text{m - n}}} \right)}} \\
\]
$
\Rightarrow {\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }} = \left( {\dfrac{{{1^{\text{x}}} \times {1^{\sqrt {\text{x}} }}}}{{{5^{\text{x}}} \times {5^{\sqrt {\text{x}} }}}}} \right) \\
\\
$
One to the power of anything equals to one itself.
$ \Rightarrow \left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right)$
Now our inequality looks like this,
$
{5^{56}}\left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right) > 1 \\
\Rightarrow {5^{56{\text{ - x - }}\sqrt {\text{x}} }} > 1 \\
$
1 can be expressed as ${5^0}$ (5 to the power of zero)
\[
\Rightarrow {5^{56 - {\text{x - }}\sqrt {\text{x}} }} > {5^0} \\
\Rightarrow 56 - {\text{x - }}\sqrt {\text{x}} > 0 \\
{\text{ }} \\
\]
\[56 - {\text{x - }}\sqrt {\text{x}} \]Can be expressed as \[{\text{56 - x + 7}}\sqrt {\text{x}} {\text{ - 8}}\sqrt {\text{x}} \]
\[
\Rightarrow 7\left( {\sqrt {\text{x}} + 8} \right) - \sqrt {\text{x}} \left( {\sqrt {\text{x}} + 8} \right) \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {7 - \sqrt {\text{x}} } \right) > 0 \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {\sqrt {\text{x}} - 7} \right) < 0 \\
\]
As \[\left( {\sqrt {\text{x}} + 8} \right)\]is positive for all rational numbers, that means
\[\left( {\sqrt {\text{x}} - 7} \right)\]Should be negative. (i.e. <0)
\[ \Rightarrow \sqrt {\text{x}} < 7\]
Squaring on both sides
\[
\Rightarrow {\text{x}} < 49 \\
\Rightarrow 0 \leqslant {\text{x < 49}} \\
\]
Hence x belongs to (0, 49) which makes Option A the correct answer.
Note –
In such types of questions first simplify the equation by bringing all the exponents of the same number together using the laws of exponents, then compare it as a whole to the other part of the inequality. Then simplify the equation accordingly and find out the factors if there are any in order to obtain the limits of the required number. Properties of rational numbers come in handy while solving these types of questions.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
What were the major teachings of Baba Guru Nanak class 7 social science CBSE
AIM To prepare stained temporary mount of onion peel class 7 biology CBSE
Write a letter to the editor of the national daily class 7 english CBSE