
If 3x-2y=11 and xy=12, find the value of $27x^{3}-8y^{3}$.
Answer
613.8k+ views
Hint: In this question we have given 3x-2y=11 and xy=12, and we have to find the value of $27x^{3}-8y^{3}$, so for this we have to write this: $27x^{3}-8y^{3}$ as $\left( a^{3}-b^{3}\right) $ form and after that we have to use one formula, that is, $\left( a^{3}-b^{3}\right) =\left( a-b\right) \left( a^{2}+ab+b^{2}\right) $, by which we will get our required solution.
Complete step-by-step solution:
Given conditions are
3x-2y=11 …………………….equation(1)
xy=12 ………………………..equation(2)
Now, $27x^{3}-8y^{3}$ this can be written as,
$27x^{3}-8y^{3}$
$=3^{3}\times x^{3}-2^{3}\times y^{3}$
$=\left( 3x\right)^{3} -\left( 2y\right)^{3} $ [since, as we know that $a^{n}\times b^{n}=\left( ab\right)^{n} $]
Now by using $\left( a^{3}-b^{3}\right) =\left( a-b\right) \left( a^{2}+ab+b^{2}\right) $..........equation(3)
We get,
$=\left( 3x\right)^{3} -\left( 2y\right)^{3} $ [ we have used a=3x and b=2y]
$=\left( 3x-2y\right) \left\{ \left( 3x\right)^{2} +\left( 3x\right) \left( 2y\right) +\left( 2y\right)^{2} \right\} $
$=\left( 3x-2y\right) \left\{ \left( 3x\right)^{2} +6xy+\left( 2y\right)^{2} \right\} $
$=11\times \left\{ \left( 3x\right)^{2} +6\times 12+\left( 2y\right)^{2} \right\} $ [using equation(1) and (2)]
$=11\times \left\{ \left( 3x\right)^{2} +\left( 2y\right)^{2} +72\right\} $ ………...equation(4)
So to find the solution of the above equation, we have to find the value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $, so for this we have to use identity , that is, $ \left( a\right)^{2} +\left( b\right)^{2} =\left( a-b\right)^{2} +2ab$
So by the above formula we can write $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ as,
$\left\{ \left( 3x-2y\right)^{2} +2\left( 3x\right) \left( 2y\right) \right\} $
=$\left\{ \left( 3x-2y\right)^{2} +12xy\right\} $
=$\left\{ \left( 11\right)^{2} +12\times 12\right\} $ [using equation (1) and (2)]
=121+144=265.
So therefore, we get $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ =265.
Now putting the value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ in equation(4), we get,
$11\times \left\{ \left( 3x\right)^{2} +\left( 2y\right)^{2} +72\right\} $
=$11\times \left\{ 265+72\right\} $
=$11\times 337$=3707.
Therefore, we can write $27x^{3}-8y^{3}$=3707, which is our required solution.
Note: To solve this type of problems we need to keep in mind those formulas that we have used in this solution, also you might get confused that why we separately find the value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $, because in this question we have given only the values of 3x-2y=11 and xy=12 and there is no direct value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ , so we have to use these( i.e,3x-2y=11 and xy=12) to find its value.
Complete step-by-step solution:
Given conditions are
3x-2y=11 …………………….equation(1)
xy=12 ………………………..equation(2)
Now, $27x^{3}-8y^{3}$ this can be written as,
$27x^{3}-8y^{3}$
$=3^{3}\times x^{3}-2^{3}\times y^{3}$
$=\left( 3x\right)^{3} -\left( 2y\right)^{3} $ [since, as we know that $a^{n}\times b^{n}=\left( ab\right)^{n} $]
Now by using $\left( a^{3}-b^{3}\right) =\left( a-b\right) \left( a^{2}+ab+b^{2}\right) $..........equation(3)
We get,
$=\left( 3x\right)^{3} -\left( 2y\right)^{3} $ [ we have used a=3x and b=2y]
$=\left( 3x-2y\right) \left\{ \left( 3x\right)^{2} +\left( 3x\right) \left( 2y\right) +\left( 2y\right)^{2} \right\} $
$=\left( 3x-2y\right) \left\{ \left( 3x\right)^{2} +6xy+\left( 2y\right)^{2} \right\} $
$=11\times \left\{ \left( 3x\right)^{2} +6\times 12+\left( 2y\right)^{2} \right\} $ [using equation(1) and (2)]
$=11\times \left\{ \left( 3x\right)^{2} +\left( 2y\right)^{2} +72\right\} $ ………...equation(4)
So to find the solution of the above equation, we have to find the value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $, so for this we have to use identity , that is, $ \left( a\right)^{2} +\left( b\right)^{2} =\left( a-b\right)^{2} +2ab$
So by the above formula we can write $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ as,
$\left\{ \left( 3x-2y\right)^{2} +2\left( 3x\right) \left( 2y\right) \right\} $
=$\left\{ \left( 3x-2y\right)^{2} +12xy\right\} $
=$\left\{ \left( 11\right)^{2} +12\times 12\right\} $ [using equation (1) and (2)]
=121+144=265.
So therefore, we get $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ =265.
Now putting the value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ in equation(4), we get,
$11\times \left\{ \left( 3x\right)^{2} +\left( 2y\right)^{2} +72\right\} $
=$11\times \left\{ 265+72\right\} $
=$11\times 337$=3707.
Therefore, we can write $27x^{3}-8y^{3}$=3707, which is our required solution.
Note: To solve this type of problems we need to keep in mind those formulas that we have used in this solution, also you might get confused that why we separately find the value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $, because in this question we have given only the values of 3x-2y=11 and xy=12 and there is no direct value of $\left( 3x\right)^{2} +\left( 2y\right)^{2} $ , so we have to use these( i.e,3x-2y=11 and xy=12) to find its value.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


