
If $1,\omega ,{{\omega }^{2}}$are cube root of unity, then find the value of \[\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}\] .
Answer
611.1k+ views
Hint: The given problem is related to cube roots of unity. We will solve this question using the following properties of cube roots of unity:
(i). $1+\omega +{{\omega }^{2}}=0$
(ii). ${{\omega }^{3}}=1$
Complete step-by-step answer:
To proceed with the solution, firstly, we will simplify the given expression. The given expression is \[\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}\]. We can split $3\omega $ as $\omega +2\omega $ and $-{{\omega }^{2}}$ in the second term as \[-2{{\omega }^{2}}+{{\omega }^{2}}\]. So, the expression changes to \[\left( 1+\omega +{{\omega }^{2}}+2\omega \right)+{{\left( 1+\omega +{{\omega }^{2}}+2\omega -2{{\omega }^{2}} \right)}^{4}}\] . Now, we know $1+\omega +{{\omega }^{2}}=0$ .
\[\Rightarrow \left( 1+\omega +{{\omega }^{2}}+2\omega \right)+{{\left( 1+\omega +{{\omega }^{2}}+2\omega -2{{\omega }^{2}} \right)}^{4}}=\left( 0+2\omega \right)+{{\left( 0+2\omega -2{{\omega }^{2}} \right)}^{4}}\].
$\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=2\omega +{{\left( 2\omega -2{{\omega }^{2}} \right)}^{4}}$
Now, we will take 2\[\omega \] common from the second term. So, on taking 2$\omega $ common, we get:
$\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=2\omega +{{\left( 2\omega \left( 1-\omega \right) \right)}^{4}}$
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+16{{\omega }^{4}}{{\left( 1-\omega \right)}^{4}}.......(i)\]
Now, we know that the expansion of ${{\left( 1-x \right)}^{4}}={{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}-4x+1$. So, the expansion of \[{{\left( 1-\omega \right)}^{^{4}}}\]will be \[{{\left( 1-\omega \right)}^{^{4}}}={{\omega }^{4}}-4{{\omega }^{3}}+6{{\omega }^{2}}-4\omega +1\]
Now, we know that the value of \[{{\omega }^{3}}=1\] .
\[\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=\omega -4+6{{\omega }^{2}}-4\omega +1\]
\[\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=-3\omega -3+6{{\omega }^{2}}\]
Taking -3 common, we get:
\[{{\left( 1-\omega \right)}^{^{4}}}=-3\left( 1+\omega -2{{\omega }^{2}} \right)\]
$\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=-3\left( 1+\omega +{{\omega }^{2}}-3{{\omega }^{2}} \right)$
Now, we know, $1+\omega +{{\omega }^{2}}=0$
\[\Rightarrow {{\left( 1-\omega \right)}^{4}}=-3\left( 0-3{{\omega }^{2}} \right)\]
\[\Rightarrow {{\left( 1-\omega \right)}^{4}}=9{{\omega }^{2}}\]
On substituting \[{{\left( 1-\omega \right)}^{4}}=9{{\omega }^{2}}\] in equation (i), we get:
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+16{{\omega }^{4}}\times 9{{\omega }^{2}}\]
=\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144{{\omega }^{6}}\]
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144{{\left( {{\omega }^{3}} \right)}^{2}}\]
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144\]
Hence, the value of \[\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}\]comes out to be \[144+2\omega \]
Note: While making substitution, take care of the sign. Sign mistakes are very common and students can get a wrong answer even due to a single sign mistake. So, students should perform calculations and substitutions very carefully.
(i). $1+\omega +{{\omega }^{2}}=0$
(ii). ${{\omega }^{3}}=1$
Complete step-by-step answer:
To proceed with the solution, firstly, we will simplify the given expression. The given expression is \[\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}\]. We can split $3\omega $ as $\omega +2\omega $ and $-{{\omega }^{2}}$ in the second term as \[-2{{\omega }^{2}}+{{\omega }^{2}}\]. So, the expression changes to \[\left( 1+\omega +{{\omega }^{2}}+2\omega \right)+{{\left( 1+\omega +{{\omega }^{2}}+2\omega -2{{\omega }^{2}} \right)}^{4}}\] . Now, we know $1+\omega +{{\omega }^{2}}=0$ .
\[\Rightarrow \left( 1+\omega +{{\omega }^{2}}+2\omega \right)+{{\left( 1+\omega +{{\omega }^{2}}+2\omega -2{{\omega }^{2}} \right)}^{4}}=\left( 0+2\omega \right)+{{\left( 0+2\omega -2{{\omega }^{2}} \right)}^{4}}\].
$\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=2\omega +{{\left( 2\omega -2{{\omega }^{2}} \right)}^{4}}$
Now, we will take 2\[\omega \] common from the second term. So, on taking 2$\omega $ common, we get:
$\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=2\omega +{{\left( 2\omega \left( 1-\omega \right) \right)}^{4}}$
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+16{{\omega }^{4}}{{\left( 1-\omega \right)}^{4}}.......(i)\]
Now, we know that the expansion of ${{\left( 1-x \right)}^{4}}={{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}-4x+1$. So, the expansion of \[{{\left( 1-\omega \right)}^{^{4}}}\]will be \[{{\left( 1-\omega \right)}^{^{4}}}={{\omega }^{4}}-4{{\omega }^{3}}+6{{\omega }^{2}}-4\omega +1\]
Now, we know that the value of \[{{\omega }^{3}}=1\] .
\[\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=\omega -4+6{{\omega }^{2}}-4\omega +1\]
\[\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=-3\omega -3+6{{\omega }^{2}}\]
Taking -3 common, we get:
\[{{\left( 1-\omega \right)}^{^{4}}}=-3\left( 1+\omega -2{{\omega }^{2}} \right)\]
$\Rightarrow {{\left( 1-\omega \right)}^{^{4}}}=-3\left( 1+\omega +{{\omega }^{2}}-3{{\omega }^{2}} \right)$
Now, we know, $1+\omega +{{\omega }^{2}}=0$
\[\Rightarrow {{\left( 1-\omega \right)}^{4}}=-3\left( 0-3{{\omega }^{2}} \right)\]
\[\Rightarrow {{\left( 1-\omega \right)}^{4}}=9{{\omega }^{2}}\]
On substituting \[{{\left( 1-\omega \right)}^{4}}=9{{\omega }^{2}}\] in equation (i), we get:
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+16{{\omega }^{4}}\times 9{{\omega }^{2}}\]
=\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144{{\omega }^{6}}\]
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144{{\left( {{\omega }^{3}} \right)}^{2}}\]
\[\Rightarrow \left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}=\left( 2\omega \right)+144\]
Hence, the value of \[\left( 1+3\omega +{{\omega }^{2}} \right)+{{\left( 1+3\omega -{{\omega }^{2}} \right)}^{4}}\]comes out to be \[144+2\omega \]
Note: While making substitution, take care of the sign. Sign mistakes are very common and students can get a wrong answer even due to a single sign mistake. So, students should perform calculations and substitutions very carefully.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

