
If $ 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $ , then
A. $ a = n,b = 1 $
B. $ a = n,b = 5 $
C. $ a = 1,b = 5 $
D. $ a = n,b = n $
Answer
499.8k+ views
Hint: First, we shall analyze the given information so that we are able to solve the given problem. Here, we are given that $ 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $
We are asked to calculate the values of $ a $ and $ b $ . We need to consider $ {S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} $
Then we shall multiply it by five. An, we need to subtract both the resultant equations. Then, we will note that the sequence is in geometric progression. Then we need to apply the formula of the sum of $ {n^{th}} $ terms of G.P
Formula to be used:
The formula to calculate the sum of $ {n^{th}} $ terms of G.P is as follows.
$ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $ where $ a $ is the first term of G.P, $ r $ is the common ratio of G.P, and is $ n $ the number of terms.
Complete step by step answer:
It is given that $ 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $
We are asked to calculate the values of $ a $ and $ b $ .
Let $ {S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} $ ……. $ \left( 1 \right) $
We need to multiply the equation $ \left( 1 \right) $ by $ 5 $
Hence, we get
$ 5{S_n} = 1.5 \times 5 + {2.5^2} \times 5 + {3.5^3} \times 5 + .... + n{.5^n} \times 5 $
$ 5{S_n} = {1.5^2} + {2.5^3} + {3.5^4} + .... + n{.5^{n + 1}} $ ………. $ \left( 2 \right) $
We need to subtract the equation $ \left( 1 \right) $ from the equation $ \left( 2 \right) $ .
$ {S_n} - 5{S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} - {1.5^2} - {2.5^3} - {3.5^4} - ....\left( {n - 1} \right){5^n} - n{.5^{n + 1}} $
$ - 4{S_n} = 1.5 + {2.5^2} - {1.5^2} + {3.5^3} - {2.5^3} + .... + n{.5^n} - \left( {n - 1} \right){5^n} - n{.5^{n + 1}} $
\[ \Rightarrow - 4{S_n} = 1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} - n{.5^{n + 1}}\] ………… $ \left( 3 \right) $
Here, we shall note that \[1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n}\] is in geometric progression.
\[1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} = 1.5 + 1.5 \times 5 + 1.5 \times {5^2} + .... + 1.5 \times {5^{n - 1}}\]
Hence the first term will be $ a = 5 $ and the common ratio will be $ r = \dfrac{{{5^2}}}{5} = 5 $
Now, we shall apply the formula of the sum of $ {n^{th}} $ terms of G.P, $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $
\[1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} = 1.5 + 1.5 \times 5 + 1.5 \times {5^2} + .... + 1.5 \times {5^{n - 1}}\]
$ = \dfrac{{5\left( {{5^n} - 1} \right)}}{{5 - 1}} $
$ = \dfrac{{5\left( {{5^n} - 1} \right)}}{4} $
Now, we shall substitute the above result in the equation $ \left( 3 \right) $ .
\[ \Rightarrow - 4{S_n} = 1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} - n{.5^{n + 1}}\]
\[ \Rightarrow - 4{S_n} = \dfrac{{5\left( {{5^n} - 1} \right)}}{4} - n{.5^{n + 1}}\]
\[ = \dfrac{{{5^{n + 1}} - 5}}{4} - n{.5^{n + 1}}\]
\[ = \dfrac{{{5^{n + 1}} - 5 - 4n{{.5}^{n + 1}}}}{4}\]
$ \Rightarrow - 16{S_n} = {5^{n + 1}} - 4n{.5^{n + 1}} - 5 $
$ \Rightarrow - 16{S_n} = {5^{n + 1}}\left( {1 - 4n} \right) - 5 $
Multiplying throughout by minus sign, we get
$ \Rightarrow 16{S_n} = {5^{n + 1}}\left( {4n - 1} \right) + 5 $
$ \Rightarrow {S_n} = \dfrac{1}{{16}}\left[ {{5^{n + 1}}\left( {4n - 1} \right) + 5} \right] $
$ \Rightarrow {S_n} = \dfrac{1}{{16}}\left[ {\left( {4n - 1} \right){5^{n + 1}} + 5} \right] $ …………. $ \left( 4 \right) $
It is given that $ {S_n} = $ $ 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $ ………….. $ \left( 5 \right) $
Now, we shall compare the equations $ \left( 4 \right) $ and $ \left( 5 \right) $
That is,
$ \dfrac{1}{{16}}\left[ {\left( {4n - 1} \right){5^{n + 1}} + 5} \right] = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $
Since all the terms are equal except $ a $ and $ b $ , we can get the answer $ a = n,b = 5 $
So, the correct answer is “Option B”.
Note: If we are given the sum of $ {n^{th}} $ terms of G.P, then we need to apply the formula $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $ and $ {S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 $ where $ a $ is the first term of G.P, $ r $ is the common ratio of G.P and is $ n $ the number of terms.
Since the common ratio is greater than one, we applied the formula $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $
Suppose the common ratio is smaller than one, we need to apply the formula $ {S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 $
We are asked to calculate the values of $ a $ and $ b $ . We need to consider $ {S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} $
Then we shall multiply it by five. An, we need to subtract both the resultant equations. Then, we will note that the sequence is in geometric progression. Then we need to apply the formula of the sum of $ {n^{th}} $ terms of G.P
Formula to be used:
The formula to calculate the sum of $ {n^{th}} $ terms of G.P is as follows.
$ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $ where $ a $ is the first term of G.P, $ r $ is the common ratio of G.P, and is $ n $ the number of terms.
Complete step by step answer:
It is given that $ 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $
We are asked to calculate the values of $ a $ and $ b $ .
Let $ {S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} $ ……. $ \left( 1 \right) $
We need to multiply the equation $ \left( 1 \right) $ by $ 5 $
Hence, we get
$ 5{S_n} = 1.5 \times 5 + {2.5^2} \times 5 + {3.5^3} \times 5 + .... + n{.5^n} \times 5 $
$ 5{S_n} = {1.5^2} + {2.5^3} + {3.5^4} + .... + n{.5^{n + 1}} $ ………. $ \left( 2 \right) $
We need to subtract the equation $ \left( 1 \right) $ from the equation $ \left( 2 \right) $ .
$ {S_n} - 5{S_n} = 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} - {1.5^2} - {2.5^3} - {3.5^4} - ....\left( {n - 1} \right){5^n} - n{.5^{n + 1}} $
$ - 4{S_n} = 1.5 + {2.5^2} - {1.5^2} + {3.5^3} - {2.5^3} + .... + n{.5^n} - \left( {n - 1} \right){5^n} - n{.5^{n + 1}} $
\[ \Rightarrow - 4{S_n} = 1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} - n{.5^{n + 1}}\] ………… $ \left( 3 \right) $
Here, we shall note that \[1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n}\] is in geometric progression.
\[1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} = 1.5 + 1.5 \times 5 + 1.5 \times {5^2} + .... + 1.5 \times {5^{n - 1}}\]
Hence the first term will be $ a = 5 $ and the common ratio will be $ r = \dfrac{{{5^2}}}{5} = 5 $
Now, we shall apply the formula of the sum of $ {n^{th}} $ terms of G.P, $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $
\[1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} = 1.5 + 1.5 \times 5 + 1.5 \times {5^2} + .... + 1.5 \times {5^{n - 1}}\]
$ = \dfrac{{5\left( {{5^n} - 1} \right)}}{{5 - 1}} $
$ = \dfrac{{5\left( {{5^n} - 1} \right)}}{4} $
Now, we shall substitute the above result in the equation $ \left( 3 \right) $ .
\[ \Rightarrow - 4{S_n} = 1.5 + {1.5^2} + {1.5^3} + .... + {1.5^n} - n{.5^{n + 1}}\]
\[ \Rightarrow - 4{S_n} = \dfrac{{5\left( {{5^n} - 1} \right)}}{4} - n{.5^{n + 1}}\]
\[ = \dfrac{{{5^{n + 1}} - 5}}{4} - n{.5^{n + 1}}\]
\[ = \dfrac{{{5^{n + 1}} - 5 - 4n{{.5}^{n + 1}}}}{4}\]
$ \Rightarrow - 16{S_n} = {5^{n + 1}} - 4n{.5^{n + 1}} - 5 $
$ \Rightarrow - 16{S_n} = {5^{n + 1}}\left( {1 - 4n} \right) - 5 $
Multiplying throughout by minus sign, we get
$ \Rightarrow 16{S_n} = {5^{n + 1}}\left( {4n - 1} \right) + 5 $
$ \Rightarrow {S_n} = \dfrac{1}{{16}}\left[ {{5^{n + 1}}\left( {4n - 1} \right) + 5} \right] $
$ \Rightarrow {S_n} = \dfrac{1}{{16}}\left[ {\left( {4n - 1} \right){5^{n + 1}} + 5} \right] $ …………. $ \left( 4 \right) $
It is given that $ {S_n} = $ $ 1.5 + {2.5^2} + {3.5^3} + .... + n{.5^n} = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $ ………….. $ \left( 5 \right) $
Now, we shall compare the equations $ \left( 4 \right) $ and $ \left( 5 \right) $
That is,
$ \dfrac{1}{{16}}\left[ {\left( {4n - 1} \right){5^{n + 1}} + 5} \right] = \dfrac{{\left( {4n - 1} \right){5^{a + 1}} + b}}{{16}} $
Since all the terms are equal except $ a $ and $ b $ , we can get the answer $ a = n,b = 5 $
So, the correct answer is “Option B”.
Note: If we are given the sum of $ {n^{th}} $ terms of G.P, then we need to apply the formula $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $ and $ {S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 $ where $ a $ is the first term of G.P, $ r $ is the common ratio of G.P and is $ n $ the number of terms.
Since the common ratio is greater than one, we applied the formula $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $
Suppose the common ratio is smaller than one, we need to apply the formula $ {S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

