Answer
Verified
401.4k+ views
Hint: This is a question of algebraic equations. The above question can be easily solved by opening the square root and solving for x. These types of questions can also be solved by a hit and trial method where we assume values of x and put it in the equation to verify it.
Complete step by step answer:
Here we are given \[\sqrt{2x-3}=5\]
We will remove the square root of the equation by squaring both sides of the inequality and then solving step by step.
Squaring both sides of the equality does not change the equation or its root, hence we can simply square both sides.
\[\sqrt{2x-3}=5\]
Squaring both sides of the equation
\[\begin{align}
& \Rightarrow {{\left( \sqrt{2x-3} \right)}^{2}}={{\left( 5 \right)}^{2}}........(1) \\
& \\
\end{align}\]
Since we know that square of the square root is simply the number without any change that is
\[\begin{align}
& \Rightarrow {{\left( \sqrt{a} \right)}^{2}}=a \\
& \\
\end{align}\]
Hence \[{{\left( \sqrt{2x-3} \right)}^{2}}\]= \[2x-3\]
So the equation (1) can be written as
2x-3 = 25
Taking 3 on the other side of the equation we get
\[\Rightarrow \]2x = 25+3
\[\Rightarrow \]2x = 26
Dividing both sides of equality by 2, we get
\[\Rightarrow \]x = \[\dfrac{26}{2}\]
\[\Rightarrow \]x = 13
Hence the solution of the given equation \[\sqrt{2x-3}=5\] is given as x = 13.
Note:
In questions like these where we need to remove the square root we should remember that squaring both sides of the equation does not affect the correct root but it may add additional roots to the equation, for example:
2x – 3 = 5, the solution of this simple equation is x= 4
If we square both sides of the equation we get
\[{{\left( 2x-3 \right)}^{2}}={{5}^{2}}.......(1)\]
Solving the equation (1) we get x= -1 and 4
Whereas the original equation only satisfies x= 4 solution.
Hence in such a case, we must verify our final solution by putting it in the original equation.
Complete step by step answer:
Here we are given \[\sqrt{2x-3}=5\]
We will remove the square root of the equation by squaring both sides of the inequality and then solving step by step.
Squaring both sides of the equality does not change the equation or its root, hence we can simply square both sides.
\[\sqrt{2x-3}=5\]
Squaring both sides of the equation
\[\begin{align}
& \Rightarrow {{\left( \sqrt{2x-3} \right)}^{2}}={{\left( 5 \right)}^{2}}........(1) \\
& \\
\end{align}\]
Since we know that square of the square root is simply the number without any change that is
\[\begin{align}
& \Rightarrow {{\left( \sqrt{a} \right)}^{2}}=a \\
& \\
\end{align}\]
Hence \[{{\left( \sqrt{2x-3} \right)}^{2}}\]= \[2x-3\]
So the equation (1) can be written as
2x-3 = 25
Taking 3 on the other side of the equation we get
\[\Rightarrow \]2x = 25+3
\[\Rightarrow \]2x = 26
Dividing both sides of equality by 2, we get
\[\Rightarrow \]x = \[\dfrac{26}{2}\]
\[\Rightarrow \]x = 13
Hence the solution of the given equation \[\sqrt{2x-3}=5\] is given as x = 13.
Note:
In questions like these where we need to remove the square root we should remember that squaring both sides of the equation does not affect the correct root but it may add additional roots to the equation, for example:
2x – 3 = 5, the solution of this simple equation is x= 4
If we square both sides of the equation we get
\[{{\left( 2x-3 \right)}^{2}}={{5}^{2}}.......(1)\]
Solving the equation (1) we get x= -1 and 4
Whereas the original equation only satisfies x= 4 solution.
Hence in such a case, we must verify our final solution by putting it in the original equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE